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Abstract.
In 2018, Zhang et al. introduced the Persistent Fault Analysis (PFA) for the first time,
which uses statistical features of ciphertexts caused by faulty Sbox to recover the key
of block ciphers. However, for most of the variants of PFA, the prior knowledge of
the fault (location and value) is required, where the corresponding analysis will get
more difficult under the scenario of multiple faults. To bypass such perquisite and
improve the analysis efficiency for multiple faults, we propose Chosen-Plaintext based
Persistent Fault Analysis (CPPFA). CPPFA introduces chosen-plaintext to facilitate
PFA and can reduce the key search space of AES-128 to extremely small. Our
proposal requires 256 ciphertexts, while previous state-of-the-art work still requires
1509 and 1448 ciphertexts under 8 and 16 faults, respectively, at the only cost of
requiring 256 chosen plaintexts. In particular, CPPFA can be applied to the multiple
faults scenarios where all fault locations, values and quantity are unknown, and the
worst time complexity of CPPFA is O(28+nf ) for AES-128, where nf represents the
number of faults. The experimental results show that when nf > 4, 256 pairs of
plaintext-ciphertext can recover the master key of AES-128. As for LED-64, only 16
pairs of plaintext-ciphertext reduce the remaining key search space to 210.
Keywords: Fault Attack · Persistent Fault Analysis · Multiple Faults · AES ·
LED

1 Introduction
The security of cryptographic algorithms has long been proven by cryptographers, and it is
difficult to obtain the master key using brute force or simple algebraic analysis. However,
most cryptographic algorithms rely on physical device platforms such as SIM cards, IC
cards, etc. The method of recovering the key by injecting fault into the physical device is
called Fault Injection Attack (FIA). FIA was first proposed and applied to RSA in 1997 by
Boneh et al. [BDL97]. In the same year, Biham et al. proposed Differential Fault Analysis
(DFA) on the block cipher DES [BS97]. DFA uses correct and faulty ciphertext pairs to
recover the key. DFA is the most extensively used fault analysis technique, which works
with almost all of the block ciphers. Besides, the fault analysis methods developed on
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the basis of FIA include Ineffective Fault Analysis (IFA) [Cla07], Statistical Fault Analysis
(SFA) [FJLT13] and Statistical Ineffective Fault Analysis (SIFA) [DEK+18].

The types of fault injection models can be divided into three categories: transient
faults, permanent faults, and persistent faults. The majority of the proposed fault attack
techniques focus on transient faults, which only affect the system for a short time. Transient
faults typically require the injection at a specific time and location, thus changing the
intermediate values in the encryption, which affects only the current encryption of the
device. Permanent faults result in irreversible faults of the equipment [Sko10]. Different
from the first two, persistent faults are between transient faults and permanent faults,
which hold for a certain duration and will not disappear until the device reboots. Schmidt
et al. were the first to use the term persistent fault to describe an attack on AES that
erased the non-volatile memory with UV light [SHP09]. Later, in CHES 2018, Zhang et al.
extended persistent faults and proposed Persistent Fault Analysis (PFA) [ZLZ+18].

Transient faults require a high level of precision for attackers, which raises the cost and
difficulty of FIA. PFA does not require a tightly-coupled injection, thus it has received
a lot of attention in recent years. Persistent faults are often used to attack constants in
cryptographic algorithms, and PFA applied this fault to the Sbox. But unfortunately,
the fault value and fault location of the Sbox need to be known or obtained through
statistics in Zhang’s first proposal of PFA. To solve the problem, Zhang et al. introduced
Maximum Likelihood Estimation (MLE) to estimate the fault value and then enumerate
the fault location with the reduced number of ciphertexts (PFA-20) [ZZJ+20]. However,
neither PFA nor PFA-20 can be extended to the multiple faults setting unless the exact
location and value of the faults are known in advance by the attacker. In practice, the
application of PFA can meet certain challenges since commonly utilized FIA techniques
such as clock glitch and electromagnetic pulse usually create multiple faults per injection
[TL21]. To cope with this problem, Engels et al. presented Statistical Persistent Fault
Analysis (SPFA) by merging SFA with PFA [ESP20]. SPFA can bypass the premise that
multiple fault values and locations are known, and can reduce the search space of key
under multiple faults. However, SPFA is only able to reduce the remaining key search
space to 250 and it needs to try all candidate keys in order to get the unique key, so
the time complexity is O(250). Soleimany et al. proposed a practical analysis method
named Practical Multiple Persistent Faults Analysis (PMPFA) [SBH+21] to overcome the
problems of multiple faults and the high computational complexity of SPFA. PMPFA
utilizes multiple faults that have the same distribution in multiple bytes of ciphertext,
and reduces the total key search space by enumerating one of the key bytes. PMPFA can
effectively utilize multiple faults and reduce the number of required ciphertexts as much
as possible. However, its way of reducing the key search space is different from that of
the original PFA. In order to demonstrate the flexibility of SPFA and PMPFA, they had
also performed their method to the lightweight block cipher LED [GPPR11], besides AES.
LED is an AES-like lightweight block cipher proposed in 2011 with an SPN structure and
an ultra-light key schedule. Therefore, it can be very fast and have a very efficient software
or hardware implementations. To verify the generality of this paper and provide a fair
comparison with previous work, LED is also one of the target ciphers of this paper.

In addition to those previous works in the multiple faults, there are other aspects of
PFA research. In 2019, Caforio et al. extended PFA to block ciphers under the Feistel
networks [CB19]. Xu et al. combined multiple rounds of fault leakages and used GPU
acceleration to reduce the number of ciphertexts to less than 1000 [XZY+20]. Very recently,
Zhang et al. proposed a new attack called Algebraic Persistent Fault Analysis (APFA)
[ZFL+22], by making use of the Algebraic Fault Analysis (AFA) [CJW10] in PFA. APFA
builds algebraic equations of multiple rounds of fault leakages for block ciphers, which
are solved by an algebraic solver, thereby reducing the number of required ciphertexts.
In addition, Zheng et al. combined PFA with collision attack, and proposed a method
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named as Persistent Fault-Based Collision Analysis (PFCA) [ZLZ+21]. PFCA obtains
the plaintext collision set by chosen-plaintext [KOS10], which provides a new method for
using PFA fault information. However, PFCA is not sufficient for the utilization of fault
information and it requires more ciphertexts if the number of persistent faults is increased.

In short summary, with years of evolvement, PFA has developed a sufficient number of
theories and applications. However, there still exist some problems for different variants of
PFA, especially under scenario of multiple faults. In this paper, we propose a new analysis
method called Chosen-Plaintext based Persistent Fault Analysis (CPPFA), which introduces
the analysis of chosen-plaintext on the basis of PFA with multiple faults. CPPFA can
reduce the number of samples required and the search space for the remaining keys very
efficiently. The main contributions of this work can be summarized as follows:

• We propose Chosen-Plaintext based Persistent Fault Analysis (CPPFA) as a new
analysis method capable of recovering the master key in a scenario with multiple
unknown faults. The attacker does not need to know the fault locations, values and
the number of faults in advance. Furthermore, in comparison to previous methods,
CPPFA becomes more effective as the number of faults injected increases.

• We apply CPPFA to a variety of block ciphers, such as AES [Sta01] and LED
[GPPR11]. When the number of faults is large enough (≥ 5), the attacker just has to
construct 256 plaintexts, which is enough for reducing the key search space of AES
down to one. For LED, CPPFA can reduce the space to about 210 by 16 plaintexts.

• We abstract the fault model of CPPFA into several coupon collection problems (CCP)
and give the corresponding expectations, including the expectation of the remaining
key search space for a fixed number of samples, and the number of ciphertexts
required to obtain a unique key for various numbers of faults.

• We discuss the issue of the key schedule that has been ignored by PFA-related works,
as well as analyzing the application of CPPFA for having a protected implementation
of block ciphers.

One of the most significant contributions of CPPFA is that it can recover the master
key under the scenario of multiple unknown faults with only a few encryptions. Table 1
gives a summary of our results on AES-128 in comparison with related works, including the
original PFA [ZLZ+18], the PFA with collision analysis [ZLZ+21], the PFA with statistical
fault analysis [ESP20] and the practical PFA with multiple faults [SBH+21]. For a fair
comparison under the same number of faults nf , CPPFA requires the least amount of
ciphertexts of all PFAs to recover the key, at the only cost of introducing chosen-plaintext.

Table 1: The Table of Comparison with Related Works on AES-128(†: It is assumed the
faults are known in advance)

nf

Chosen-Plaintexts/Ciphertexts Remaining Key Candidates
PFA†

[ZLZ+18]
PFCA

[ZLZ+21]
SPFA
[ESP20]

PMPFA
[SBH+21]

CPPFA
this work

PFA†
[ZLZ+18]

PFCA
[ZLZ+21]

SPFA
[ESP20]

PMPFA
[SBH+21]

CPPFA
this work

2 -/2000 3330/3330 -/7775 -/1552 256/1041 216 1 250 223 1
4 -/2000 3667/3667 - -/1010 256/524 235 1 - 28.71 1
8 -/2000 3871/3871 -/2008 -/1509(671) 256/256 250 1 250 28(214.56) 1
16 -/2000 - -/1643 -/1448(477) 256/256 264 - 250 28(224.52) 1

The rest of this paper is organized as follows. Section 2 introduces the background.
Section 3 talks about the fault model, motivation and core idea. Section 4 describes the
general analysis model for CPPFA on block ciphers. Section 5 gives the calculation of two
related expectations and analyzes the time complexity of CPPFA. Section 6 and Section 7
apply the proposed CPPFA to AES-128 and LED-64 at both theoretical and experimental
levels, respectively. Section 8 concludes the paper.



522 Efficient Persistent Fault Analysis with Small Number of Chosen Plaintexts

2 Background
In this section, we will introduce the related background including Persistent Fault Analysis
(PFA) and Persistent Fault-Based Collision Analysis (PFCA).

2.1 Persistent Fault Analysis
Persistent Fault Analysis (PFA) is the first practical persistent fault analysis framework
proposed by Zhang et al. at CHES 2018. PFA will inject a single persistent fault into the
Sbox of AES, causing an initial value v in the Sbox becomes v∗. v will no longer appear,
and v∗ will appear with doubled frequency. As a result, the probability distribution for
Sbox output can be calculated as in the left part of Eq.(1). Then, the victim uses a fixed
key to encrypt multiple plaintexts (unknown to the attacker) via the faulty AES. Finally,
the attacker collects the faulty ciphertexts to recover the key.

Pr(x) =

 0 if x = v
2

256 if x = v∗
1

256 otherwise
Pr(cj) =


0 if cj = v ⊕ kR−1

j
2

256 if cj = v∗ ⊕ kR−1
j

1
256 otherwise

(1)

Because of the unbalanced distribution in the Sbox output, the ciphertext of AES will
have a similar distribution for the j-th byte cj , which can be shown in the right part of
Eq.(1). According to the distribution, three strategies are proposed for key recovery.

• Strategy 1: Utilizing cmin. Since the distribution of cj is unbalanced, there is a
value that never appears that is noted as cmin. It is accepted that cmin = v ⊕ kR−1

j .
If v is known and there are enough ciphertexts, kR−1

j can be recovered uniquely in
the following way:

kR−1
j = v ⊕ cmin (2)

• Strategy 2: Utilizing cmax. Similar to Strategy 1, a value in cj has twice the
frequency, which is called cmax. According to the distribution, cmax = v∗ ⊕ kR−1

j .
In other words, if v∗ can be known, kR−1

j can be inferred by Eq.(3).

kR−1
j = v∗ ⊕ cmax (3)

• Strategy 3: Utilizing impossible values cj 6= v ⊕ kR−1
j . According to Strategy 1,

cmin will never appear. This means that cj 6= cmin, i.e., cj 6= v ⊕ kR−1
j . Therefore,

using Eq.(4) for each cj of ciphertexts, which will reduce the search space of kR−1
j

by one.
kR−1
j 6= v ⊕ cj (4)

In practice, Strategy 3 is the most commonly adopted.
Observing the above three strategies, they all have a similar premise: knowing the

actual injected fault v∗ or the initial value v. If nf faults are injected in the Sbox, there will
be nf indistinguishable disappearance values and other nf values with doubled frequency
for the ciphertext cj . In the case where the initial values of nf faults {v0, v1, · · · , vnf−1}
(called as the impossible value set) are known, strategy 3 still works. This means that a
ciphertext can reduce nf impossible values in the search space of kR−1

j by Eq.(5) (called
as Strategy 3 with multiple faults).

kR−1
j 6= v0 ⊕ cj

...
kR−1
j 6= vnf−1 ⊕ cj

(5)
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2.2 Persistent Fault-Based Collision Analysis
Persistent Fault-Based Collision Analysis (PFCA) is proposed by Zheng et al. in 2021. The
fault model of PFCA is somewhat different from that of PFA. It abandons the advantage
of ciphertext-only analysis, and analyzes the key by plaintexts. PFCA introduces chosen-
plaintext, and circumvents the premise that PFA requires knowledge of the fault. Suppose
a single fault is injected into the Sbox of AES, and let Sbox[l] = v becomes Sbox[l] = v∗.
It can be found that there is another initial Sbox value Sbox[l′] = v∗. And then PFCA
randomly generates the plaintexts. For these plaintexts, the first byte takes any of 256
possible values, and the other bytes are fixed. There will be two different plaintexts, whose
first bytes are p0 = k0 ⊕ l and p′0 = k0 ⊕ l′. In other word, ciphertexts encrypted by these
two plaintexts will be equal. Similarly, for each byte, the chosen plaintexts for that byte
can be constructed (The total number of plaintexts is 256×16 = 4096). In each byte, there
will be two plaintexts whose corresponding ciphertexts are the same, and a relationship
such as Eq.(6) can be obtained.{

p0 ⊕ k0 = p1 ⊕ k1 = · · · = p15 ⊕ k15 = l

p′0 ⊕ k0 = p′1 ⊕ k1 = · · · = p′15 ⊕ k15 = l′
(6)

Taking the first row in Eq.(6) as an example, it can be found that when the first byte k0
of the key is determined, the entire key is determined.

k1 = p1 ⊕ p0 ⊕ k0

k2 = p2 ⊕ p0 ⊕ k0
...

k15 = p15 ⊕ p0 ⊕ k0

(7)

According to Eq.(7), k0 traverses all possible values, and 256 candidates of the initial
round key K can be obtained. Then, PFCA examines each key candidate with a given
plaintext-ciphertext pair, i.e., if the encryption result of the plaintext using a key candidate
equals the ciphertext, the key candidate is what we are searching for. PFCA can reduce
the master key search space to 28 with 4096 plaintexts. Unlike original PFA, it does not
use ciphertexts to reduce the search space of the key, but just compares whether the same
ciphertexts exist to filter out the corresponding plaintexts, and discards these ciphertexts
after comparison. In addition, PFCA can also be extended to multi-fault cases.

2.3 Rear-Round Collision
There is another crucial issue that cannot be ignored when using the chosen-plaintext
technique in persistent fault analysis. For two plaintexts, even if the intermediate states
are not equal after the first round, the subsequent internal states and the corresponding
ciphertexts may collide, which is called the rear-round collision. In addition to the
collisions in the first round, rear-round collisions may also make the output identical
ciphertexts. In this case, the chosen-plaintext technique is invalid. When the number of
fault nf = 1, it is assumed that two plaintexts have different intermediate states after
the first round Sbox. After Mixcolumns, the intermediate states will be four bytes
different. In the best case, two bytes of the first column collide after the second round
Sbox (the probability is (4/216)2), and the remaining two affect 8 bytes of the states after
Mixcolumns. Therefore, the probability of all bytes colliding after the third round is less
than (4/216)2+8 = 7.17e− 43 [ZLZ+21]. When nf > 1 and all the faults are independent
(nf elements change to another nf elements), in the best case of the rear-round collision,
all four bytes of the two intermediate states will be the same after the second round Sbox.
At this time, the probability of each pair of bytes in the two intermediate states colliding
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is (2nf/28) × (2/28) = 4nf/216 (2nf/28 is the probability of all elements related with
faults, and 2/28 is the probability of two elements with the same value), the probability of
rear-round collision after the second round is less than (4nf/216)4. Furthermore, PFCA
[ZLZ+21] is speculated that rear-round collisions can be neglected when the number of
faults is greater than 2, and this view is experimentally verified. The experimental results
show no rear-round collision is detected when the number of faults is less than 48, which
ensured that the chosen-plaintext technique is feasible in the vast majority of cases.

2.4 Notations
Table 2 defines the notations used in this paper.

Table 2: Notations used in this paper.
Notations Definitions Notations Definitions
Parameters: K The master secret key

w The element size ki The i-th element of K
m The number of elements KR−1 The last round key
θ The θ-th element kR−1

i The i-th element of KR−1

R The total number of rounds Analysis:
SBox The real S-Box that is publicly known nf The number of injected faults

Samples: ns The number of sets
P, C 2w chosen plaintexts and corresponding ciphertexts λi The size of i-th set Vi
Cj The j-th ciphertext Vi The i-th set of initial value of the Sbox corresponding to v∗i
Pi The i-th plaintext set (= {P 0

i , · · · , P
λi−1
i }) with same ciphertexts vji The j-th initial value of the i-th original set Vi

P ji The j-th plaintext of Pi V∗ The set of the injected value of the Sbox
pji The θ-th element of the plaintext P ji v∗i The i-th injected value of Sbox corresponding to Vi
Pi The θ-th elements set of Pi (= {p0

i , · · · , p
λi−1
i }) D The impossible value set of Sbox (={v0, · · · , vnf })

P (j) The j-th plaintext of P Relation:
p(j) The θ-th element of P (j) (=j) A → B B can be inferred from A

3 Overview
In this section, we will introduce the fault model, our motivation and core idea for the
proposed Chosen-Plaintext based Persistent Fault Analysis (CPPFA).

3.1 Fault Model
Suppose nf faults are injected into distinct Sbox elements, which are changed to other
ns elements in the Sbox that are not affected by the faults. Furthermore, the faults are
persistent, i.e., the injected faults will remain in the Sbox for a certain time until the Sbox
is refreshed. As illustrated in Figure 1, three faults are injected after one injection. Those
faults could also be injected through multiple injections as they are persistent and could be
accumulated. For the first two faults, the initial values vα, vβ in Sbox become vγ (marked
as red blocks in Figure 1) where α and β are the index of corresponding faulty elements,
respectively. Note that there is already one element in Sbox whose initial value is exactly
vγ . Therefore there are three elements in total in the faulty Sbox whose values will be the
same as vγ . Similarly, for the third fault, the initial value vδ becomes vε (marked as blue
blocks in Figure 1) where there are actually two elements in the faulty Sbox whose value is
exactly vε.

Therefore, the values vα, vβ (marked in red) and vδ (marked in blue) will not exist
in the output of the faulty Sbox. These values can form a set of impossible values for
faulty Sbox outputs and can be denoted as D (the impossible value set). Note that
D = {vα, vβ , vδ}. We assume the attacker has the capability to control the plaintexts and
obtain the corresponding ciphertexts. Specifically, the attacker can use random plaintexts,
or construct some chosen plaintexts. For chosen plaintexts, the attacker will construct 2w
special ones for encryption, denoted as {P (0), P (1), · · · , P (2w−1)}, where each element at
an arbitrary index θ in the plaintexts has 2w different values which ranges from 0 to 2w− 1.
Without loss of generality, we assume the θ-th element value of P (j) is j and values of all
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v0

vε

vγ

vα

vδ

vβ

The correct Sbox

V0 = {vα, vβ , vγ}

The impossible value set D = {vα, vβ , vδ}

V1 = {vδ, vε}

The initial value set Vi

vε

vγ

vγ

vε

vγ

The faulty Sbox

· · · 2w-1P
(2w−1) · · ·

···
· · · pεP ε · · ·

···
· · · pδP δ · · ·

···
· · · pγP γ · · ·

···
· · · pβP β · · ·

···
· · · pαPα · · ·

···
· · · 0P (0) · · ·

The θ-th element of P (j)(= p(j) = j)

P0

P1

P0 = {Pα, P β , P γ}
P1 = {P δ, P ε}

P0 = {pα, pβ , pγ}
P1 = {pδ, pε}

· · ·C
2w−1

···
· · ·Cε
···

· · ·Cδ
···

· · ·Cγ
···

· · ·Cβ
···

· · ·Cα
···

· · ·C0

· · ·Cγ

· · ·Cε

Figure 1: The overview of Fault Model and Core Idea

other elements are the same for different plaintexts. Then, the attacker can collect the
corresponding ciphertexts for subsequent analysis.

3.2 Motivation
In fact, there exist several problems in the previous work, which actually motivates us to
propose more efficient analysis method under the scenario of general PFA. These problems
can be summarized as followings.

1). For those analysis methods which inherited from the original PFA [ZLZ+18], such
as EPFA [XZY+20] and APFA [ZFL+22], they require either a strong attacker who
should hold the prior knowledge of the faults, or a complicated process to recover
the fault locations and values first before the fault analysis. We are motivated to
pursue a solution to relax such constrain and recover the secret key directly. In this
case, it is not required to know the fault locations and values. And more surprisingly,
such information could be gained as by-products during the key recovery.

2). For those analysis methods which do not require the fault locations and values
to be known as prerequisite, such as SPFA [ESP20] and PFCA [ZLZ+21], they
meet certain difficulties in fully exploiting the fault leakages and still require a
larger number of encryptions (overall complexity). Specially, SPFA is only able to
reduce the remaining key search space to 250. To obtain the unique key requires
one cryptographic verification for each candidate key, and the time complexity can
be considered as O(250), which is a considerable runtime. Although PFCA can
achieve the best time complexity O(212) in most cases, the worst time complexity
is O(212 + 2128), which is no better than exhaustive search. We are motivated to
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propose new methods which fully utilize the leakages from multiple persistent faults
and require extremely low number of plaintexts-ciphertexts. In addition, the time
complexity of the new methods should be more stable while satisfying feasibility.

3). For those analysis methods which rely on the statistics of the ciphertexts, such as
PMPFA [SBH+21], it is difficult for them to control the whole analysis process, and
the possibly-correct candidates among the remaining key search space are not unique.
Accordingly, it is mandatory for them to ask for a pair of correct plaintext-ciphertext
for the purpose of additional verification. We are motivated to reduce the research
space directly down to one, therefore no verification pair of encryptions is required.

In general, there is a lack of an analysis method that can bypass the prior knowledge
of the faults, only require a small number of data complexity, and could be stable enough
to reduce the key search space to the unique one. Naturally, we can think that PFA is not
only applicable to ciphertext-only scenarios. With such motivation, it is possible for us to
add some plaintexts information as auxiliaries which can help us solve the above problems.

3.3 Core Idea
In Sec.2.1, the application of PFA under multiple faults is mentioned and it is assumed that
the attacker knows the fault locations and values in advance. In Sec.2.2, PFCA obtained
the relationship between different key bytes through chosen plaintexts. However, their
method did not pay enough attention to these plaintexts where the information about the
desired fault locations and values is actually buried inside and could be further explored.

In a nutshell of our core idea, our method exploits such hidden leakages through chosen
plaintexts and utilizes the guess of the first round key byte to generate some candidates of
the impossible value set D, denoted as D̂. For each D̂, a remaining key search space of
last round can be generated from ciphertexts by Strategy 3 with multiple faults (see
Eq.(5) in Sec.2.1).

More specifically, we first construct 2w chosen plaintexts on the θ-th (0 ≤ θ < m)
element, and encrypt them to obtain the corresponding 2w ciphertexts under the fault
model shown in Figure 1 (three faults were injected into the Sbox). There are three
plaintexts Pα, P β and P γ (surrounded by red dotted lines on the left side of Figure 1)
whose θ-th element (pα, pβ , pγ) satisfy Eq.(8):

Sbox[pα ⊕ kθ] = vα → vγ //faulty Sbox element

Sbox[pβ ⊕ kθ] = vβ → vγ //faulty Sbox element

Sbox[pγ ⊕ kθ] = vγ → vγ //correct Sbox element

(8)

The left side of “→” represents the initial outputs of the Sbox vα, vβ and vγ (vγ is not
affected by the fault injection and remains the same), and the right side represents the
output vγ after fault injection. Therefore, vα, vβ and vγ form a set V0 = {vα, vβ , vγ} → vγ ,
which is a set of initial values of Sbox output with the same output after fault injection
and named as the initial value set. Similarly, we can have V1 = {vδ, vε} → vε.

Here, we can obtain Feature 1: Only one member of the set Vi (i.e., V0 : vγ ; V1 : vε)
will appear in the output of the faulty Sbox, and the rest members will exist in the
impossible value set D (i.e., vα, vβ , vδ). So the impossible value set D can be inferred from
the initial value set Vi.

On the one hand, Pα, P β and P γ are almost the same. The only slight difference lies
in the θ-th element. On the other hand, due to the faulty Sbox, the θ-th element of the
Sbox output in the first round will be equal. This means that the ultimate ciphertexts
corresponding to the three plaintexts (Pα, P β , P γ) are identical after the entire encryption,
i.e., Cα = Cβ = Cγ (the red ciphertexts on the right side of Figure 1).
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The three identical ciphertexts (Cα, Cβ , Cγ) can be found directly in 2w ciphertexts, so
that their corresponding plaintexts (Pα, P β , P γ) can be obtained. Next the θ-th element
(pα, pβ , pγ) of these three plaintexts will form the set P0 = {pα, pβ , pγ}, which is a set of
the θ-th element of plaintexts with the same ciphertexts. Similarly, for other identical
ciphertexts illustrated in Figure 1, a corresponding yet different set P1 = {pδ, pε} can be
obtained. Moreover, the corresponding ciphertext for P0 and P1 will be different.

If the value of kθ is known, V0 and V1 can be easily determined by Eq.(8). Since
the search space of kθ is 2w, we can try every possible value k̂θ (i.e., the guess for kθ,
0 ≤ k̂θ < 2w) without the knowledge of kθ. For each k̂θ, two corresponding guess sets V̂0
and V̂1 can also be calculated by Eq.(9). V̂0 and V̂1 are considered as the deducing of the
output values of Sbox through the chosen plaintexts, and the faults remain unchanged
during encryption due to persistent fault, thus they can be verified through the analysis on
the last round using the final ciphertexts. Some candidate values of k̂θ will be eliminated
and some will be kept. The overall key search space will be reduced gradually.

V̂0 =
{
v̂α, v̂β , v̂γ

}
= Sbox[P0 ⊕ k̂θ]

V̂1 =
{
v̂δ, v̂ε

}
= Sbox[P1 ⊕ k̂θ]

v̂α = Sbox[pα ⊕ k̂θ], v̂β = Sbox[pβ ⊕ k̂θ], v̂γ = Sbox[pγ ⊕ k̂θ]

v̂δ = Sbox[pδ ⊕ k̂θ], v̂ε = Sbox[pε ⊕ k̂θ]

(9)

In this example, when V̂0 = {v̂α, v̂β , v̂γ} and V̂1 = {v̂δ, v̂ε} are determined, only one
member of V̂i will appear in the output of the faulty Sbox due to Feature 1, so six
different possible candidates D̂ can be obtained, as shown in Eq.(10).

D̂0 = {v̂β , v̂γ , v̂δ} D̂1 = {v̂α, v̂γ , v̂δ} D̂2 = {v̂α, v̂β , v̂δ}

D̂3 = {v̂β , v̂γ , v̂ε} D̂4 = {v̂α, v̂γ , v̂ε} D̂5 = {v̂α, v̂β , v̂ε}
(10)

For each possible candidate D̂, a corresponding remaining key search space of last round
can be conducted by the original PFA under multiple faults (see Eq.(5) in Sec.2.1). When
all possible candidate D̂ have been scrutinized, the keys that satisfy the guess value k̂θ in
this six remaining spaces are collected as candidate keys, and the rest are excluded. After
all k̂θ have been enumerated, the total key search space can be obtained.

Compared with the original PFA under single fault, which can only exclude one
impossible value of each element using a ciphertext, in the case of multiple faults, each
faulty ciphertext can exclude multiple (in this case is three) impossible values for each
element. Therefore, the key search space can be reduced to a relatively small size or even
one by merely using 2w faulty ciphertexts corresponding to the 2w chosen plaintexts.

4 Chosen-Plaintext based Persistent Fault Analysis
Suppose nf faults are injected into the Sbox, resulting in ns sets {V0,V1, · · · ,Vns−1}
(ns ≤ nf ). Vi is the set of initial values which are associated with the same output
of Sbox after fault injection. The size of each set Vi is denoted as λi (λi ≥ 2) where
Vi = {v0

i , v
1
i , · · · , v

λi−1
i }. For the original PFA, it is just a special case where nf = 1,

ns = 1 and λ0 = 2 as there is only one injected fault. But in practice, there are possibly
multiple faults, which might cause multiple sets of Vi. As shown in Eq.(11), vji is the
initial value of the j-th member in the set Vi. After the injection, it becomes v∗i (Note
that there is one member in Vi whose initial value is exactly v∗i . Such v∗i is not caused by
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the injected fault).

V0 = {v0
0 , v

1
0 · · · , v

λ0−1
0 } → v∗0

V1 = {v0
1 , v

1
1 · · · , v

λ1−1
1 } → v∗1

...
Vns−1 = {v0

ns−1, v
1
ns−1 · · · , v

λns−1
ns−1 } → v∗ns−1

(11)

Based on the explanation of Sec.3.3, after encrypting 2w chosen plaintexts, ns ciphertext
sets will appear in the 2w ciphertexts, and the ciphertexts in each ciphertext set are equal.
For each ciphertext set (denoted as Ci as shown in the left part of Figure 2), we can
find the corresponding plaintext set (denoted as Pi as shown in the center of Figure 2).
For each plaintext set Pi, there will be λi plaintexts whose θ-th element are different
while other elements are exactly same. These different elements can form a set named Pi
as shown in the right part of Figure 2. The subsequent analysis is based on the set Pi.
Algorithm 1 describes the pseudo code for finding ns sets {P0,P1, · · · ,Pns−1} from P and
C. The attacker uses a tag array B to record the set index corresponding to the plaintexts.
Algorithm 1 traverses all ciphertexts and puts the θ-th element of plaintexts with the same
ciphertexts into the set Pi.

Algorithm 1: get Pi from P and C.
input :C, P
output :{P0,P1, · · · ,Pns−1}

1 ns = 0;
2 B = {−1,−1, · · · ,−1} ; // the size of B is 2w.
3 for i = 0; i < 2w; + + i do
4 for j = i− 1; j ≥ 0; −− j do
5 if Ci == Cj and Bj == −1 then
6 Bi = Bj = ns;
7 Pns .append(p(i)) ; // p(i) is the θ-th element of P (i).
8 Pns .append(p(j)) ; // P (i) is the plaintext corresponding to Ci.
9 ns++;

10 break;
11 else if Ci == Cj and Bj 6= −1 then
12 Bi = Bj ;
13 PBj .append(p(i));
14 break;
15 end
16 end
17 end
18 return {P0,P1, · · · ,Pns−1};

110 ,,,
−i

iii PPP
 110 ,,,

−i
iii ppp
110 −

=== i
iii CCC


Figure 2: The relationship of plaintexts.

After having {P0,P1, · · · ,Pns−1}, the next step is to try all possible candidate k̂θ
(0 ≤ k̂θ < 2w), assuming kθ is unknown. For each candidate k̂θ, a corresponding V̂i can be
generated by Eq.(12), where V̂i is the guess value for Vi. Since there are ns number of Vi,
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there will be ns number of V̂i accordingly.

V̂i = Sbox[Pi ⊕ k̂θ]
= {Sbox[p0

i ⊕ k̂θ],Sbox[p1
i ⊕ k̂θ], · · · ,Sbox[pλi−1

i ⊕ k̂θ]}
= {v̂0

i , v̂
1
i · · · , v̂

λi−1
i } (12)

Algorithm 2: get D from {V̂0, V̂1, · · · , V̂ns−1}.
input :{V̂0, V̂1, · · · , V̂ns−1}
output :D

1 D̂ = ∅;
2 for i0 = 0; i0 < λ0; + + i0 do
3 for i1 = 0; i1 < λ1; + + i1 do

4
...

5 for ins−1 = 0; ins−1 < λns−1; + + ins−1 do
6 D̂ = {};
7 for j0 = 0; j0 < λ0; + + j0 do
8 if j0 6= i0 then
9 D̂.append(v̂j0

0 ); // Pick the impossible Sbox output value from V̂0.
10 end
11 end

12
...

13 for jns−1 = 0; jns−1 < λns−1; + + jns−1 do
14 if jns−1 6= ins−1 then

15 D̂.append(v̂jns−1
ns−1 ); // The size of each D̂ is

ns−1∑
i=0

(λi − 1)

16 end
17 end
18 D.append(D̂) ; // D̂ = {v̂0, v̂1, · · · }
19 end

20
...

21 end
22 end
23 return D;

Because of Feature 1, for each V̂i, one member in V̂i is chosen as the Sbox element
which is not affected by the fault, and the remaining members are put into the set D̂ (guess
for the impossible values set D). As shown in Algorithm 2, after completing the same
operation for all sets V̂i, a candidate D̂ can be obtained. Algorithm 2 describes the pseudo
code for filtering D̂ from {V̂0, V̂1, · · · , V̂ns−1}. The algorithm selects λi − 1 members from
each set V̂i and adds them to D̂, and D̂ is stored in D for output. Each candidate k̂θ can

generate
ns−1∏
i=0

λi different candidates D̂. The i-th candidate set D̂ obtained base on k̂θ is

labeled as D̂i.
Based on the guess value k̂θ, for each D̂i, a remaining key search space of last round

(denoted as KR−1
k̂θ,D̂i

, which is the search space associated with k̂θ and D̂i) can be determined

by Strategy 3 with multiple faults (see Eq.(5) in Sec.2.1). After obtaining
ns−1∏
i=0

λi

remaining key search spaces KR−1
k̂θ,D̂i

(0 ≤ i <
ns−1∏
j=0

λj) corresponding to k̂θ, the union of all

these spaces (KR−1
k̂θ,D̂0

∪KR−1
k̂θ,D̂1

∪ · · · ) is denoted as KR−1
k̂θ

. When we enumerate all k̂θ, the
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total key search space of last round (denoted as KR−1) is the union of all KR−1
k̂θ

.

Algorithm 3: CPPFA on block ciphers using multiple faults on Sbox.
input :C,P
output :K

1 K = ∅ ;
2 {P0,P1, · · · ,Pns−1} = Algorithm 1(P,C); // Step 1.
3 for k̂θ = 0; k̂θ < 2w; + + k̂θ do
4 KR−1

k̂θ
= ∅; // Step 2.

5 for i = 0; i < ns; ++i do
6 V̂i = Sbox[k̂θ ⊕ Pi];
7 end
8 D = Algorithm 2({V̂0, V̂1, · · · , V̂ns−1}) ;
9 for D̂ ∈ D do

10 KR−1
k̂θ,D̂

= {{0, 1, · · · , 2w − 1}0, · · · {0, 1, · · · , 2w − 1}m−1} ;
11 for C ∈ C do
12 for j = 0;j < m;+ + j do
13 for v̂ ∈ D̂ do
14 KR−1

k̂θ,D̂
[j].remove(cj ⊕ v̂); // k̂R−1

j 6= cj ⊕ v̂ // Step 3.

15 end
16 end
17 end
18 KR−1

k̂θ
= KR−1

k̂θ
∪ KR−1

k̂θ,D̂
;

19 end
20 for K̂R−1 ∈ KR−1

k̂θ
do

21 K̂ = InverseKeySchedule (K̂R−1);
22 if θ-th element of K̂ == k̂θ then
23 K.append(K̂); // Step 4.
24 end
25 end
26 end
27 return K ;

In addition, for the last round key candidate K̂R−1 in KR−1
k̂θ

, the master key candidate
K̂ can be obtained by inverse key schedule algorithm. Since this candidate K̂ is obtained
on the basis of k̂θ, if the θ-th element of K̂ is not equal to k̂θ, this candidate can be
excluded to further narrow the remaining key search space.

The complete steps of CPPFA are shown in Algorithm 3. Algorithm 3 describes the
pseudo code of the whole process of CPPFA. Step 1, CPPFA obtains the sets Pi by
Algorithm 1 (in Line 2). Step 2, enumerating k̂θ from 0 ∼ 2w − 1, obtaining the impossible
values set D̂ for each k̂θ by Algorithm 2 (in Line 3 ∼ 8). Step 3, filtering the last round
key with D̂ (in Line 9 ∼ 18). Step 4, using the inverse key schedule algorithm, further
reduce the last round key search space KR−1

k̂θ
(in Line 19 ∼ 24). Finally, the search space

for the master key is returned.

5 Theoretical Analysis

The nf faults are injected into nf distinct Sbox elements and which are changed to other
ns elements of Sbox that are not affected by the faults. For {V0, · · · ,Vns−1} (the initial

value sets) in this case, there is
ns−1∑
i=0

λi = (nf + ns) (λi is the size of Vi) and the size of D

(the impossible value set) is nf .
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5.1 Analysis of the Size of D
When nf = 2 (D = {v0, v1}), v0 ⊕ kR−1

j and v1 ⊕ kR−1
j must not exist in the j-th element

of the ciphertext. When the key search space of j-th element is reduced by kj 6= vi ⊕ cj ,
it is inevitable that there is another key candidate k′R−1

j = v0 ⊕ v1 ⊕ kR−1
j will be left.

Therefore, the key search space of j-th element will eventually drop to 2. The reason for
this phenomenon is that the j-th element of ciphertext cj is not equal to v0 ⊕ kR−1

j and
v1⊕ kR−1

j . However, suppose the j-th element of last round key is equal to v0⊕ v1⊕ kR−1
j ,

the cj will also have a distribution under kR−1
j , i.e., cj is not equal to v0 ⊕ kR−1

j and
v0 ⊕ kR−1

j (see Eq.(13)).
k′R−1
j = v0 ⊕ v1 ⊕ kR−1

j

k′R−1
j ⊕ v0 = v0 ⊕ v1 ⊕ kR−1

j ⊕ v0 = v1 ⊕ kR−1
j

k′R−1
j ⊕ v1 = v0 ⊕ v1 ⊕ kR−1

j ⊕ v1 = v0 ⊕ kR−1
j

(13)

For the case nf = 3 (D = {v0, v1, v2}), suppose there is another element k′R−1
j

( 6= kR−1
j ), both of which and kR−1

j are left in the remaining key search space of j-th
element. If k′R−1

j exists, k′R−1
j ⊕ {v0, v1, v2} needs to be equal to kR−1

j ⊕ {v0, v1, v2}.
However, if there is k′R−1

j ⊕ v0 = v1 ⊕ kR−1
j , then k′R−1

j ⊕ v1 = v0 ⊕ kR−1
j . For the v2,

k′R−1
j ⊕ v2 must equal to v2 ⊕ kR−1

j , which contradicts k′R−1
j 6= kR−1

j . In other words, for
the case nf = 3, the remaining key search space of each element can be reduced to the
unique one. In addition, the conclusion is the same when nf is some other odd number.

For the case nf = 4 (D = {v0, v1, v2, v3}), it is similar to nf = 2 or nf = 3. If
k′R−1
j exists, k′R−1

j needs to satisfy the relation in Eq.(14). As long as there is such a
relationship between these four different values, k′R−1

j cannot be removed by Strategy 3
with multiple faults of PFA (see Sec.2.1). For AES, if nf = 4, the probability of Eq.(14)
is 1/253 (≈ 0.39%) of all possible fault combinations, which is also consistent with our
experimental data.

k′R−1
j ⊕ v0 = v1 ⊕ kR−1

j k′R−1
j ⊕ v2 = v3 ⊕ kR−1

j

k′R−1
j ⊕ v1 = v0 ⊕ kR−1

j k′R−1
j ⊕ v3 = v2 ⊕ kR−1

j

↓
v0 ⊕ v1 = v2 ⊕ v3

(14)

The problem can also be abstracted as the probability of drawing 4 different balls from
256 balls numbered from 0 to 255 whose numbers satisfy Eq.(14). The total number of
combinations is 256× 255× 254× 253. There are 256, 255, 254 possibilities for the first
three balls, respectively. After the first three balls are determined, the number of the
fourth ball satisfying Eq.(14) is unique, so the probability is (256× 255× 254× 1)/(256×
255× 254× 253) = 1/253. Using the same method that when nf = 6, the probability is
(256× 255× 254× 1× 252× 1)/(256× · · · × 251) = 1/(253× 251). Therefore, when the
number of faults nf is even and nf>2, the probability is 1/(253× 251× · · · × (257− nf )).

In summary, it can be considered that when the size of D is 2, i.e., nf = 2, the
remaining search space of each byte can only be reduced to 2. As for the rest of the cases,
it can be reduced to unique excluding some special cases. For the simplification of the
problem, in the following analysis, we ignored the discussion of these special cases when
nf > 2.

5.2 Analysis of the Remaining Key Search Space
Suppose nf faults are injected, resulting in an uneven distribution of the output of Sbox.
Since for the j-th element of the ciphertext, cj = sj ⊕ kR−1

j (sj is Sbox output, ignore
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the linear transformation) and kR−1
j is constant during the encryption process, then the

uneven distribution of sj eventually leads to the uneven distribution of cj . The probability
distribution of cj is shown in Eq.(15).

Pr(cj) =



λ0
2w if cj = v∗0 ⊕ kR−1

j
λ1
2w if cj = v∗1 ⊕ kR−1

j
...

...
λns−1

2w if cj = v∗ns−1 ⊕ kR−1
j

0 if cj ∈ D ⊕ kR−1
j

1
2w otherwise

(15)

Let T denote the number of different values of cj in the 2w ciphertexts encrypted by 2w
chosen plaintexts. Then the expectation of T can be calculated by Eq.(16). The first part
in Eq.(16) is 2w different values of cj , and the second part is the expectation that a certain
value does not appear in the 2w ciphertexts.

E(T ) = 2w −
2w−1∑
cj=0

[1− Pr(cj)]2
w

= 2w −
{

(1− λ0
2w )2w + · · · (1− λns−1

2w )2w +
ns−1∑
i=0

(λi − 1) + (2w −
ns−1∑
i=0

λi)× (1− 1
2w )2w

}
= 2w −

{
ns−1∑
i=0

( 2w−λi
2w )2w + nf + (2w −

ns−1∑
i=0

λi)× (1− 1
2w )2w

}
(16)

For the last round keyKR−1, the initial key search space of j-th element is {0, 1, · · · , 2w−1}.
What is the size of the remaining search space after using kj 6= cj⊕vi to eliminate impossible
values for T distinct cj and nf distinct vi (vi is the i-th element in D)?

This problem can be abstracted into a probability model, i.e., there are 2w − 1 distinct
balls in the box, each time T balls are taken out and put back, how many balls have not
been taken out after nf times? The probability that value kj remains in the search space
of j-th element is denoted by Pr(kj) in Eq.(17). Especially in the case of nf = 2, as we
explained in Sec.5.1, the size of the remaining key search space of j-th element can only
be reduced to 2.

Pr(kj) =
{

( 2w−1−T
2w−1 )nf if kj 6= kR−1

j

1 if kj = kR−1
j

nf 6= 2

Pr(kj) =
{

( 2w−2−T
2w−2 )nf if kj 6= kR−1

j and kj 6= kR−1
j ⊕ v0 ⊕ v1

1 if kj = kR−1
j or kj = kR−1

j ⊕ v0 ⊕ v1 nf = 2 (17)

Taking nf 6= 2 as an example, except that kR−1
j will not be removed from the search

space, the remaining 2w − 1 elements have the same probability of not being removed
under nf times, and the expectation of remaining space can be expressed as Eq.(18).

E1 =

1 + (2w − 1)× ( 2w−1−E(T )
2w−1 )nf , nf 6= 2

2 + (2w − 2)× ( 2w−2−E(T )
2w−2 )nf , nf = 2

(18)

Therefore, the expectation of the remaining key spaces size of j-th element can be
obtained by E1. However, the above derivation is based on the fact that our guesses k̂θ and
D̂ are both correct. In other cases, i.e., when one of k̂θ or D̂ guesses wrong, the probability
that kj remains in the search space is Eq.(19). When the guess is wrong, kR−1

j may also
be removed from the key search space, causing the size of the search space to be 0.

Pr(kj) = (2w − T
2w )nf (19)
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Similarly, we will have the expectation of a wrong guess, as shown in Eq.(20).

E2 = 2w × (2w − E(T )
2w )nf (20)

The total number of guesses is 2w ×
ns−1∏
i=0

λi, of which only one case is correct. The last

round key search space is KR−1. The expectation of KR−1 can be represented as Eq.(21).
The first item (i.e., (E1)m) in EKR−1 is the number of key search space for the correct
guess (the m-th power of E1), and the second item is that case for the incorrect guesses.

EKR−1 = (E1)m + [(2w ×
ns−1∏
i=0

λi)− 1]× (E2)m (21)

5.3 The Required Number of Faulty Ciphertexts
For each element, suppose that the faulty ciphertexts are randomly and uniformly dis-
tributed and each element of ciphertext can eliminate nf impossible values in the search
space of each element, then the number of faulty ciphertexts required to eliminate 2w − 1
impossible values is N .

This problem can be abstracted as a variant of the coupon collection problem [BHS94]:
Suppose there are 2w− 1 kinds of coupons, each of which has the same probability of being
obtained and the coupons are also in unlimited supply. For each draw of nf coupons, how
many draws will it take to collect all 2w − 1 coupons?

Note that event At,i is the case where the i-th coupon is still missed after the t-th draw,
and N is the number of draws, then Pr(N > t) represents the probability of the number of
draws N > t, i.e., after t times of draws, there are still coupons that have not been drawn.

Pr(N > t) = Pr(
2w−1
∪
i=1

At,i)

=
∑

1≤i≤2w−1
Pr(At,i)−

∑
1≤i<j≤2w−1

Pr(At,i ∩At,j)

+
∑

1≤i<j<k≤2w−1
Pr(At,i ∩At,j ∩At,k) + · · ·+ (−1)2wPr(

2w−1
∩
i=1

At,i) (22)

Among them, Pr(
r
∩
s=1

At,is) = (
(2w−1−r

nf
)

(2w−1
nf

) )t, (1 ≤ r ≤ 2w− 1), put it into Eq.(22) to get:

Pr(N > t) =
2w−1∑
r=1

(−1)r+1
(

2w − 1
r

)
(
(2w−1−r

r

)(2w−1
t

) )t (23)

The expectation of the number of draws N can be obtained as:

E(N) =
∞∑
t=0

Pr(N > t) =
∞∑
t=0

2w−1∑
r=1

(−1)r+1
(

2w − 1
r

)
(
(2w−1−r

nf

)(2w−1
nf

) )t

=
2w−1∑
r=1

(−1)r+1
(

2w − 1
r

) ∞∑
t=0

(
(2w−1−r

nf

)(2w−1
nf

) )t =
2w−1∑
r=1

(−1)r+1
(

2w − 1
r

) (2w−1
nf

)(2w−1
nf

)
−
(2w−1−r

nf

)
(24)

When nf = 1, this is the original PFA with single fault, E(N) = (2w − 1) · (1 + 1
2 +

1
3 + · · ·+ 1

2w−1 ), which also agrees with the result given in [ZLZ+18]. If nf can satisfy its
E(N) ≤ 2w, the key search space can be reduced to a relatively small level by using 2w
faulty ciphertexts encrypted by 2w chosen plaintexts.
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5.4 Complexity Analysis of CPPFA

CPPFA enumerates the θ-th element kθ (0 ∼ 2w − 1) of the master key, utilizes Algorithm

2 to generate
ns−1∏
i=0

λi sets D̂ for each k̂θ and uses Eq.(5) to reduce the search space for each

D̂ to obtain the final key. Therefore, the time complexity of CPPFA is O(2w ×
ns−1∏
i=0

λi),

and the worst time complexity is O(2w ×
nf−1∏
i=0

2) = O(2w+nf ) when nf = ns (nf + ns =
ns−1∑
i=0

λi, λi ≥ 2). Theoretically, the time complexity of CPPFA will increase with the
increase of the number of faults nf . When nf = 16, the worst time complexity of CPPFA
is O(224), which can be done on a personal computer in less than one hour.

6 CPPFA on Block Ciphers

Suppose we inject nf faults into the Sbox of a block cipher, resulting in ns sets Vi and the
size of Vi is λi. In this section, we take into account the worst scenario, when nf = ns,
λi = 2, and CPPFA has the worst time complexity of O(2w+nf ).

6.1 CPPFA on AES-128

Without loss of generality, we can construct 256 chosen plaintexts on the first byte of AES
as shown in Eq.(25), and encrypt them to obtain the corresponding 256 faulty ciphertexts.

0x00 112233445566778899AABBCCDDEEFF
0x01 112233445566778899AABBCCDDEEFF

...
0xFF 112233445566778899AABBCCDDEEFF

(25)

Firstly, {P0,P1, · · · ,Pnf−1} can be obtained by using Algorithm 1 for these 256 pairs
of plaintext-ciphertext. The next step is to enumerate k0. For each k̂0 (guess for k0), we
will utilize Eq.(12) to derive the corresponding {V̂0, V̂1, · · · , V̂nf−1} and these nf V̂i can
be used to identify certain candidate sets D̂ (guess for the impossible value set D), as
mentioned in Algorithm 2. When k̂0 = k0 and D̂ = D, E1 may be calculated using Eq.(18),
and in other cases, E2 can be calculated using Eq.(20). In the end, the total key search
space EKR−1 can be obtained by the formula EKR−1 = (E1)16 + (256× 2nf − 1)× (E2)16.
The results of different nf are shown in Table 3.

According to Table 3, it can be found that when nf ≥ 5, the remaining key search space
KR−1 under 256 ciphertexts is rather tiny. At this point, as mentioned in Sec.4, KR−1

can be further reduced by the inverse key schedule algorithm without incurring significant
time overhead. Because the key schedule algorithm of AES-128 is complex enough, it
can be considered that KR−1 will become unique after optimization. The comparison of
expected and simulation results is presented in the Table 7 in Sec.7.2, and it is found
that the results are consistent with our conclusions. In addition, when nf < 5, KR−1 is
too large to enumerate the correct key by the inverse key schedule algorithm. By adding
some extra ciphertexts generated from random plaintexts, CPPFA can further lower KR−1.
Therefore, according to Sec.5.3, we can calculate the required number of ciphertexts for
AES-128 as shown in the Table 4. The result in Table 4 minus 28 is the amount of extra
ciphertexts required.
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Table 3: The remaining key search space of AES-128.
Number of Faults (nf ) Ciphertexts E1 E2 EKR−1

2 256 36.03309245 35.10030117 292.135

3 256 13.85204758 13.16230477 270.494

4 256 5.82847978 4.97713571 249.049

5 256 2.82932152 1.89771410 227.889

6 256 1.69885697 0.72956404 212.264

7 256 1.26920464 0.28278424 25.503

8 256 1.10455634 0.11050558 22.295

16 256 1.00007237 0.00008009 20.002

Table 4: The required number of faulty ciphertexts of AES-128.
Number of Faults (nf ) |KR−1| Ciphertexts Number of Faults (nf ) |KR−1| Ciphertexts

2 216 29.617 6 1 28.000

3 1 29.028 7 1 27.807

4 1 28.607 8 1 27.577

5 1 28.299 16 1 26.539

6.2 CPPFA on LED

Table 5: The remaining key search space of LED-64.
Number of Faults Ciphertexts E1 E2 EKR−1

2 16 3.45223536 2.64796188 229.530

3 16 1.91974848 1.29159325 215.346

4 16 1.47296749 0.70127570 28.942

5 16 1.27206405 0.42025498 25.555

6 16 1.17340719 0.27593595 23.691

7 16 1.12147714 0.19723916 22.646

8 16 1.09287734 0.15262403 22.050

Similar to AES-128, we construct 16 chosen plaintexts for the first nibble of LED-64. On
LED, Algorithm 1 and Algorithm 2 are identical to AES. We can get the first elements
of plaintext sets {P0,P1, · · · ,Pnf−1}, and the guess impossible set D̂ for k̂θ. After the
last round SubCells (SB) of LED, the state matrix will pass ShiftRows (SR) and
MixColumnsSerial (MC). In other words, the inverse MC and SR must be performed
before analyzing the ciphertexts with Algorithm 3. In addition, LED lacks a key schedule
algorithm, and its key is equivalent to the master key in each round. Therefore, we can
directly compare whether the candidate value kR−1

θ in KR−1 is equal to the guessed value
k̂θ. We also estimated the expectations mentioned in Section 5 for the LED, which are
presented in the Table 5 and Table 6.

Table 6: The required number of faulty ciphertexts of LED-64
Number of Faults |KR−1| Ciphertexts Number of Faults |KR−1| Ciphertexts

2 216 24.470 6 1 22.847

3 1 23.979 7 1 22.574

4 1 23.523 8 1 22.324

5 1 23.158

According to the analysis steps of CPPFA, for each guessed key k̂θ (0 ≤ k̂θ < 16), there
will be a candidate key space KR−1

k̂θ
. If k̂θ does not exist in the remaining key search space

of θ-th nibble, we can directly exclude the whole KR−1
k̂θ

.
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6.3 Fault Recovery
Before this part, we only focused on key recovery in block ciphers. Another incidental
property of CPPFA is that it can recover fault information at the same time as the key
is recovered. When we utilize CPPFA to reduce the size of K to be unique, we can
able to determine the kθ = k̂θ, D = D̂ and Vi = V̂i, where k̂θ, D̂, and V̂i are the values
corresponding to the unique remaining key. Furthermore, the size λi of each Vi and the
number ns of Vi are the information available to us by analyzing 2w ciphertexts. Also,

there is nf + ns =
ns−1∑
i=0

λi, which means that the faults only affect the initial value of
the members in Vi. For each Vi, a member vsi of Vi is the same output value after fault
injection, and this member does not exist in the impossible value set D. So the fault
situation in Sbox can be summarized as: Sbox[l] = vji → vsi , vsi /∈ D, vsi ∈ Vi and v

j
i ∈ Vi

(0 ≤ j < λi). Through the above method, we can recover the real faults in turn.

6.4 The Key Schedule Algorithm with Faulty Sbox
Previous works about PFA have ignored the fact that the faulty Sbox may also be used
by the key schedule algorithm, such as AES. When the encryption algorithm and the
key schedule algorithm share the same faulty Sbox, it is impossible to get the master
key directly through the key of the last round by inverse key schedule algorithm without
knowing the fault. The faulty Sbox will be accessed 40 times during the whole key schedule
algorithm. Where nf = 1, the probability that the faulty Sbox element is accessed is about
1− (255/256)40 ≈ 14.5%. And it will increase with the increase of the number of faults.
Therefore, this problem is more prominent under the scenario of multiple faults.

With this in mind, let us first recall the inverse key schedule algorithm (See Eq.(26))
of AES. In generally, {W40,W41,W42,W43} is input as the key of the last round KR−1,
and the master key K0 = {W0,W1,W2,W3} is output.{

Wi−4 = Wi ⊕ SubWord(RotWord(Wi−1))⊕ Rcon i mod 4 ≡ 0
Wi−4 = Wi ⊕Wi−1 i mod 4 6≡ 0

(26)

where Rcon is the round constant and the faulty Sbox is used in SubWord.
Due to Subword uses the same faulty Sbox in the inverse and forward key schedule

algorithm, the derivation from KR−1 to K0 is unique with a known faulty Sbox. Most of
the PFA-related works that can recover the key of the last round under the scenario of
multiple faults will bypasses faults identification and recovers the KR−1 directly. Without
information about the faulty Sbox, even if KR−1 is obtained, the K cannot be obtained
by KR−1. However, CPPFA can perfectly solve this issue. Recall that Algorithm 2
(Line 7 ∼ 11) of CPPFA, according to Feature 1, we can additionally record the fault
information (v̂j0 → v̂i0 , i0 6= j0) for the V̂0 and do the same for other V̂i. When the
remaining key search space of the last round is reduced to unique, the recorded fault at
this time is the real fault. We can use this fault information and key of the last round to
recover the real master key. In addition, CPPFA does not require additional information
and does not increase the complexity of the analysis.

6.5 Attacks on Boolean Masking Countermeasure
If faulty value v′ is injected into the x-th element of Sbox, where the initial value Sbox[x] =
v → v′, it results in a correspondingly computed error element in the masking Sbox, where
Sbox′[x ⊕ m] = v ⊕ m′ → v′ ⊕ m′. Therefore, v ⊕ m′ element is missing in the Sbox,
and v′ ⊕m′ elements are doubled. Furthermore, subsequent operations can remove the
influence of m′. With the above information, it can be known that the boolean masking
does not affect the collision of faulty ciphertexts. Therefore, the attacker does not need to
consider whether the block cipher implementation is protected by basic boolean masking.
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7 Experiment and Evaluation
7.1 Experiment Setup
We implemented the experiments on a PC which has 16GB memory and an AMD Ryzen 5
4600H CPU at 3.0GHz. The operating system is a 64-bit Windows 10.

The experiments generally follow the procedures below. (1) We simulated injecting
unknown faults into the Sbox of block cipher (2) We constructed 2w chosen plaintexts and
encrypted them. (3) Estimated the number of faults nf from plaintexts and ciphertexts,
if nf is too small (nf ≤ 4 for AES and nf ≤ 4 for LED), added some additional random
encrypted ciphertexts (4) We used CPPFA for analysis.

7.2 Attack on AES
We injected nf faults into the Sbox of AES, and we performed 10,000 simulations for
each fault. The experiments of CPPFA on AES can be divided into two cases. Case
1: Only use 256 chosen plaintexts and corresponding ciphertexts (Sec.5.2). Figure 3
shows the comparison of the average size of the remaining key search space per byte
(Experiment) with the theoretical value (Theory) under different nf . It is very obvious to
notice that the two curves overlap very well. This in turn can confirm the correctness of
our theoretical expectations (Sec.5.2). Besides, when nf = 5, the size of the remaining key
search space per byte is relatively small (approximately equal to 3). It is worth noting
that the remaining search space for the last full key can be considered as the 16 power of
one byte (316 ≈ 225.36). Conversely, when nf ≤ 4, the key search space is still too large to
recover the unique key with only 256 samples. So, there is Case 2: The average number
of ciphertexts N required to reduce the remaining key search space per byte to 1 under
nf faults (Sec.5.3). The number of ciphertexts required for one byte is overall in better
agreement with the theoretical expectation (Sec.5.2). Furthermore, N for the last round
full key search space KR−1 is represented by the blue curve (|KR−1| = 1). N for one byte
and a full key search space is different. Comparing the blue and brown curves in Figure 4,
N for a full key is about 1.53 times that of one byte.

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

Number of Faults (nf )

R
em

ai
n
in
g
K
ey

S
p
ac
e
of

O
n
e
B
y
te Experiment

Theory

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

Number of Faults (nf )

R
em

ai
n
in
g
K
ey

S
p
ac
e
of

O
n
e
B
y
te Experiment

Theory

Figure 3: Single byte remaining key search
space of 256 chosen plaintexts (AES-128).
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Figure 4: The number of required ciphertexts
for the size of key search space to be one
(AES-128).

In Case 1, if k̂θ 6= kθ, there may still be some candidate keys KR−1 added to the space
of the last round keys KR−1. For KR−1 ∈ KR−1, we can convert KR−1 into the master
key K using the inverse key schedule algorithm. Then compare whether the θ-th byte in
K are equal to k̂θ, and if so, add it to the candidate space of the master key K. This can
further reduce the search space of the master key. Table 7 shows our experimental results
under the two cases. It can be found that the key schedule algorithm can effectively reduce
the search space of the AES master key, and the larger the nf , the better the effect. In
other words, when nf > 4, 256 samples can reduce the search space of the master key
to a sufficiently small amount. When nf ≤ 4, only a small number of additional random
ciphertexts need to be added.
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Table 7: Experimental Results of AES-128 and LED-64
Case 1 Case 2

AES-128 LED-64 AES-128 LED-64
nf |KR−1| |K| N nf |KR−1| |K| N nf |K| N nf |K| N
5 227.04 211.06 256 5 217.58 210.31 16 1 1 1874.918 1 1 92.650
6 215.24 26.37 256 6 217.02 210.63 16 2 1 1041.390 2 1 40.750
7 27.69 1 256 7 217.53 210.43 16 3 1 905.505 3 1 54.110
8 23.70 1 256 8 219.16 210.31 16 4 1 524.037 4 1 35.642

7.3 Attack on LED
Unlike AES, CPPFA on LED only requires 16 chosen plaintexts. With the two cases, we
also conducted 10,000 simulation experiments on LED. In Case 1, the experimental result
of the LED (marked as orange curve) resembles a parabola, which does not comply to the
theoretical expectation (5.2) when nf is relatively large. In practical, when nf is larger,
the number of different ciphertexts is smaller. Assuming that only nf ciphertexts in the
16 ciphertexts are the same, one ciphertext can reduce nf key search spaces. Then the
remaining key search space can be simply expressed as 16− 16nf + n2

f . The experimental
results (marked as orange curve on Figure 5) are similar to the shape of this quadratic
curve. It can be seen from Figure 5 that when nf is 5 ∼ 6, the effect is best. Therefore, too
many faults are not necessarily a good thing for LED. In Case 2, the experimental curves
in Figure 6 appear less smooth compared to Figure 4. As we discussed in Sec.5.1, when
nf = 2, the key search space will become {k, v0 ⊕ v1 ⊕ k}. When nf is odd, although the
remaining key search space can be reduced to 1, the probability of the above-mentioned
(Sec.5.1) for any two impossible values (vi, vj) will increase, making the reduction of the
key search space less efficient and N increases. But overall, the larger nf , the less N .
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Figure 5: Single nibble remaining key search
space of 16 chosen plaintexts (LED-64).
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Figure 6: The number of required ciphertexts
for the size of key search space to be one
(LED-64).

The data of LED-64 with two cases are also shown in Table 7. In Case 1, because
there is no key schedule algorithm in the LED, the master key and the last round key are
identical. This relationship can be used to further reduce the remaining key search space
by excluding the candidate key in KR−1 whose θ-th element is not equal to k̂θ, but the
effect is not as good as AES. Under 16 samples, the search space of the LED final master
key K can be reduced to about 210, which is adequate for brute-force verification.

7.4 Comparison with Related Works
7.4.1 About the Actual Attack

The implementation of CPPFA on actual devices can be divided into three phases:

1). Fault injection. The difficulty of CPPFA is easier than PFA-20 [ZZJ+20], and the
same difficulty as PMPFA [SBH+21]. PFA-20 uses Laser Fault Injection (LFI) to
perform single-bit fault injection on the SRAM of an ATmega163L microcontroller.
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The experimental results of PFA-20 show that LFI injecting faults at adjacent
positions of two elements will cause multiple faults (nf = 2) that can not be handled
by PFA-20. Both original PFA and PFA-20 require accurate injection techniques
and additional fault identification mechanisms. However, CPPFA can be more
easily implemented due to its more relaxed fault model (unknown multiple faults)
and less required ciphertexts. PMPFA [SBH+21] utilizes Electromagnetic Fault
Injection (EMFI) to inject persistent faults on STM32F407VG microcontrollers. The
advantage of EMFI is that fault injection can be done in a completely non-invasive
manner, but the injection accuracy is worse than that of LFI and EMFI would
cause multiple faults. Specifically, experimental results of PMPFA show that more
than 87% of the faults affected multiple AES Sbox elements (2 < nf ≤ 16) and the
ratio of single element fault was less than 10%. Furthermore, less than 3% of the
faults affected more than half of the elements of the Sbox, which violated the fault
model defined by the PMPFA and could not be handled. CPPFA and PMPFA have
similar fault model, i.e., they are suitable for multiple faults scenario and do not
need to know the fault in advance.

2). Constructing chosen plaintexts. The chosen-plaintext technique is a kind of collision
attack, which has been very mature for a long time [BK06]. The difficulty of CPPFA
is more easier than PFCA [ZLZ+21]. For each byte of a random plaintext, PFCA
takes any of 256 possible values, and the other bytes are fixed. In other words,
PFCA needs to construct 256× 16 = 4096 plaintexts. However, CPPFA only needs
to construct 256 plaintexts for one byte. CPPFA reduces the number of chosen
plaintexts from 4096 to 256, which makes the actual attack less difficult and more
friendly. In addition to PFCA, Caforio and Banik [CB19] extended PFA to the
Feistel networks in 2019, where they assumed that the adversary had access to
faulty and fault-free ciphertexts. The adversary needs to encrypt twice with fixed
plaintexts. In summary, the chosen-plaintext technique does not make PFA more
difficult, and the cost of chosen-plaintext is worth it in terms of CPPFA results.

3). Fault analysis. The analysis of CPPFA is less difficult than PFA-20, EPFA [XZY+20]
and APFA [ZFL+22], etc. These previous works require that the number of faults
is one and the fault value is known in advance, which means that the adversary
has a stronger capability. CPPFA has the ability to recovering the master key in
a scenario with multiple unknown faults. CPPFA reduces the number of required
ciphertexts to a constant 2w, which is much smaller than previous works. In multiple
faults scenario, one ciphertext of CPPFA can exclude nf elements in the key search
space, thus greatly improving the efficiency of PFA analysis. Compared to PMPFA
[SBH+21] with the same number of faults and ciphertexts, CPPFA can reduce the
key remaining search space to unique by the inverse key expansion algorithm without
additional verification.

In short, CPPFA does not make it more difficult to attack on an actual device compared
to previous works. It is even easier or the same on all phases.

7.4.2 About Time Complexity

Some previous PFA-related work is based on the statistics of ciphertexts, whose analysis
complexity is difficult to estimate. SPFA can also cope with the multiple faults scenario,
but its time complexity is O(250), which is a considerable runtime. For PFCA, which
also introduces the chosen-plaintext technique, the time complexity in a single-byte fault
scenario is O(223). Furthermore, under the scenario of multiple faults, the time complexity
of PFCA is O(212 +28×|Λ∗|15). The size of Λ∗ is related to the hamming distance between
the nf faults. Assume that nf faults make nf values in the Sbox become the same, i.e.,
there are nf + 1 identical values in the Sbox. In this case, the time complexity of CPPFA
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is O(28 × (nf + 1)), which is only related to the number of faults. However, the time
complexity of PFCA depends on the distribution of hamming distances between these nf
faults. The time complexity of PFCA falls into the worst case O(212 + 28 × (nf + 1)15)
when faults affect adjacent bytes, which is a scenario that easily occurs in an actual fault.
In addition, under the random fault model, CPPFA is only related to the fault set size λi,
while PFCA is related to the first fault selected and the hamming distance between the
faults. The time complexity ranges from O(212 + 28) to O(212 + 28 × (2nf )15), while the
CPPFA is fixed. Therefore, the time complexity of CPPFA is more stable than PFCA.

8 Conclusion
In this paper, we introduced the chosen-plaintext technique and proposed a new analysis
method called Chosen-Plaintext based Persistent Fault Analysis (CPPFA) under the prob-
lem that previous PFAs have difficulty identifying and utilizing multiple faults information.
CPPFA does not need to know the fault in advance (allow for a more relaxed fault model).
Instead, CPPFA estimates the fault by constructing chosen plaintexts and utilizes the
obtained fault to recover the key. We applied CPPFA to AES-128 and LED-64. For both
ciphers, CPPFA performed well. More specifically, if the number of faults is larger than
4, AES-128 only needs 256 pairs of plaintext and ciphertext to recover the full 128-bit
key. For LED-64, 16 samples can reduce the key space to about 210. Furthermore, we
analyzed the expectation of the remaining key search space and the number of required
ciphertexts under the scenario of multiple faults. Therefore, it can be considered that this
good performance can be verifed at both the theoretical and practical levels. In addition,
we analyzed the time complexity of CPPFA to ensure the feasibility of CPPFA in most
cases. Compared to the state-of-the-art works, CPPFA requires a much smaller sample
size and is adaptable to the scenario of any number of faults. These advantages may be
sufficient to offset the expense of plaintexts.
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