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Abstract. While recent advancements of Deep Learning (DL) in solving complex
real-world tasks have spurred their popularity, the usage of privacy-rich data for their
training in varied applications has made them an overly-exposed threat surface for
privacy violations. Moreover, the rapid adoption of cloud-based Machine-Learning-as-
a-Service (MLaaS) has broadened the threat surface to various remote side-channel
attacks. In this paper, for the first time, we show one such privacy violation by
observing a data-dependent timing side-channel (naming this to be Class-Leakage)
originating from mnon-constant time branching operation in a widely popular DL
framework, namely PyTorch. We further escalate this timing variability to a prac-
tical inference-time attack where an adversary with user level privileges and having
hard-label black-box access to an MLaaS can exploit Class-Leakage to compromise
the privacy of MLaaS users. DL models have also been shown to be vulnerable to
Membership Inference Attack (MIA), where the primary objective of an adversary is to
deduce whether any particular data has been used while training the model. Differen-
tial Privacy (DP) has been proposed in recent literature as a popular countermeasure
against MIA, where inclusivity and exclusivity of a data-point in a dataset cannot be
ascertained by definition. In this paper, we also demonstrate that the existence of
a data-point within the training dataset of a DL model secured with DP can still
be distinguished using the identified timing side-channel. In addition, we propose
an efficient countermeasure to the problem by introducing constant-time branching
operation that alleviates the Class-Leakage. We validate the approach using five
pre-trained DL models trained on two standard benchmarking image classification
datasets, CIFAR-10 and CIFAR-100, over two different computing environments
having Intel Xeon and Intel i7 processors.
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1 Introduction

In recent years, we have seen a growing importance of applications requiring assistance
of Deep Learning (DL) in both industry and academia for its undeniable performances
in long-standing AI tasks in domains such as image recognition [HZRS16], machine
translation [BCB15], malware detection [VAS*19], and autonomous driving [GTCM20]
and more. Crowd-sourcing technology giants like Google, Facebook, Amazon, and others
collect massive amounts of training data from their users and deploy personalized DL
applications on a large scale. The complexity, dynamism, and volume of data in the real
world have recently promoted cloud-based Machine Learning as a Service (MLaaS) [RGC15],
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which provides infrastructural support of powerful computing resources and substantial
domain expertise to train efficient DL models. MLaa$S is even getting popular among
healthcare software solutions that operate on private medical datasets [Ray17,Mej19]. The
growing popularity and easy availability of MLaaS has increased the concerns towards
protecting user privacy.

There is a relevant field of study pertinent to privacy-preserving DL algorithms.
These algorithms use computationally intensive secure multi-party computation [KVH™21,
KPPS21] and homomorphic encryption [GDLT16,1LJ19] to algorithmically protect user
data from entities other than the user itself. However, in this paper, we illustrate
the privacy issues in an MLaaS framework from the perspective of a passive
adversary. We consider that a trusted entity trains a private dataset and designs an
implementation for the trained model. We assume that a passive adversary has hard-label
black-box API access' to the trained model and can obtain information by exploiting
the weakness in the implementation of such models (popularly known as side-channel
information). We attempt to address the security issues in this scenario, which is practical
and different from the context of the aforementioned field of study.

Related Works

A considerable number of research utilizes the side-channel information in remote environ-
ments to reverse-engineer architecture and parameters of Deep Neural Networks (DNN)
that are proprietary. Cache-based side-channels have been exploited to reconstruct crucial
architectural secret of the victim DNN during the inference phase using the General-
ized Matrix Multiply (GEMM) of the victim DNN implementation [HDK™*18, YFT20].
Shared GPU resources coupled with hardware performance counters and GPU context-
switch side-channel have also been exploited to extract victim’s internal DNN architec-
ture [NNQA18,WZZ120]. Tt is also shown that by exploiting rowhammer fault injection on
DRAM modules crucial parameters of victim DNN can be stolen [RCYF21]. Patterns in
memory accesses have also been exploited to steal model weights as well [HZS18].Timing
side-channel have been exploited to construct an optimal substitute architecture of the
victim as well as extract DL models on high performance edge deep learning processing
unit [DSRB18,BBJP19, WCJ*21]

Duddu et al. [DSRB18] exploited timing channel for reverse-engineering a commercial-
ized DL model and Nakai et al. [NSF21] exploited timing channel in an embedded platform
for crafting adversarial examples®. Alam et al. [AM19] and Wang et al. [WHP™] also
demonstrated that DNNs are vulnerable to leaking label information of an input instance
using cache-based side-channel. However, the method proposed by Alam et al. requires
super-user privilege to access hardware performance counters of the system executing DL
implementations. On the other hand, the method proposed by Wang et al. requires full
access to the parameters of DL models (i.e., white-box access) or needs to acquire the
parameters using previous research on reverse engineering [HDK18, YFT20, NNQA18,
WZZ%20, RCYF21,DSRB18]. Having super-user privilege or the white-box access to
DL models may not be practical in various applications where security and privacy of
users are of utmost importance. In this paper, we assume that the adversary has
hard-label black-box access to DL models from user-space and can compromise
privacy without reverse-engineering any DNN parameters. Table 1 summarises
contribution of this paper compared to related works using remote side-channels on DL.

1In hard-label black-box access, a client can only obtain actual labels and does not get any knowledge
of probabilities associated with predicted labels.
2A threat that adds visually imperceptible perturbations to an input of a DNN to cause misclassification.
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Table 1: Summary of our contribution compared to related works using side-channels on

DL
Paper Side-Channel é:;:{;sﬂaéz Objective
[HDK 18], [YFT20], [AM19]F [WHP7] Cache . 0.0 0O 0,0,m.m
[NNQAIS], [WZZ'20] GPU OO 0,0
[RCYF21], [HZS18] Memory C,e 0,0
[WLLT1g], [MTH 21], [XCCT20] Power 0,0,0 .m0
[BBJP19], [YMY*20], [YKSF19] Electromagnetic ®. 0. 0 0,0,0
[BBJP19], [DSRBIS], [WCJ¥21], [NSF21]F This Work Time ®ee0 0 0 0 0. 0,0,0.m
§ Requires super-user privilege. * Requires physical access.

O :Full knowledge of DNN. @ :Only DNN architecture known. @ :DNN Black-box access.
O :Model reverse-engineering. £ :Craft adversarial examples. M : Leak label/training dataset information.

Our Contributions

In this paper, we define the term Class-Leakage as side-channel-based information leakage
from DL implementations that aids an adversary in distinguishing unknown labels of
different inputs without explicitly accessing the model parameters or the input data.
Information on the label of input data is directly linked to the sensitive information of a
user, highlighting a critical privacy concern in DL implementations. On the other hand,
the continuous rise of DL has propelled the growth of various open-source libraries, like
Tensorflow [AT16a], Keras [CT15], PyTorch [P*19], Theano [AT16b], etc., for efficient
data flow while implementing DL models. In this paper, we primarily focus on
PyTorch and identified an implementation vulnerability typically responsible
for Class-Leakage through timing side-channel®. We demonstrate that operation
of the Max Pooling module in a Convolutional Neural Network (CNN) using PyTorch is
vulnerable to input-dependent timing side-channel leakage due to improper non-constant
time implementation of branching instruction?. Further, we also demonstrate that the
vulnerability can be exploited during the inference phase of a DL model by an adversary
having access to a manifest dataset to compromise the privacy of a user using a Multi-Layer
Perceptron (MLP). The manifest dataset being the set of annotated data that is apparent
to the adversary, though not necessarily a subset of the original training dataset but
resembling it sufficiently.

In addition to the aforementioned threat to user privacy, the PyTorch vulnerability
also exposes a possible threat of Membership Inference Attack (MIA) [SSSS17,CTCP21,
TLG™21], but this work does not include it. The objective of an MIA adversary is to
deduce whether an unknown data has been part of the training dataset of a DL model.
Significant efforts in recent literature to prevent MIA — Differential Privacy (DP) being a
popular choice [ACG*16,NSH20,PTS"21]. DP algorithmically ensures that the output of
a DL model does not leak any information whether an unknown data has been a ‘member’
of the training dataset or is a ‘non-member’. In this paper, we demonstrate that the
Class-Leakage coupled with an MLP classifier can successfully determine the
presence of an unknown data in the training dataset of a DL model protected
with DP, countering its privacy guarantees. We used the PyTorch-based open-source
library Opacus [YSS™21] to train DL models with DP and demonstrate its vulnerability
against side-channel-based Class-Leakage mentioned above.

In this work, we also thrive on implementing an inexpensive countermeas-
ure by making minimal changes to the existing PyTorch library to mitigate
the correlation of timing side-channel with input data without affecting the
accuracy of DL models. We propose a constant time implementation of Max Pool
operation to the existing PyTorch library that does not affect the accuracy of DL models.

3The simplicity, ease of use, dynamic computational graph, and efficient memory usage have recently
made PyTorch one of the most sought-after libraries for several organizations to implement industrially
standard DL applications [Bal20, Car20]. These applications are exposed to the discussed vulnerability.

4We reported the vulnerability to the Meta (Facebook) AI Research team (developer of
PyTorch), and was acknowledged. We discuss the vulnerability disclosure in Section 8.
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We demonstrate that the proposed modified constant-time Max Pooling module can suc-
cessfully mitigate the input-dependent timing side-channel leakage existing in the current
PyTorch-based implementation. We also demonstrate that the proposed constant-time
Max Pooling module successfully alleviates the vulnerability of differential-private DL
models based on PyTorch (like Opacus) against our proposed attack even if the adversary
has additional information through timing side-channel.

Real Life Impact

PyTorch’s user base has exponentially increased since its release in 2016. Hence, the timing
leakage vulnerability observed in the PyTorch library is a serious privacy concern for the
parties using it to work with highly confidential data, and it should not be ignored. Major
technology giants have built their deep learning models on PyTorch including Microsoft,
Tesla, Uber, Airbnb, and Facebook itself. Tesla has built its Autopilot [DB17] system
on PyTorch. The adversary could exploit the timing leakage to get the classification
result of the models running to predict the car’s next move. The predictions can be put
together to get the complete route taken by the car. This is a potential scenario of serious
privacy threat for the car’s owner as well as Tesla. Another possible threat scenario is
for healthcare organizations that use cloud services to deploy their deep learning models,
for various purposes [Mejl19]. The models mainly use datasets containing information
from patient health records, with patients’ identities kept anonymous for privacy reasons.
Using the attack discussed later in Section 5.3 an adversary from some rival company can
steal information about the training set data used by the victim healthcare company, by
bypassing differential-private models and breaching patients’ privacy.

We summarize our primary contributions through this paper as follows:

o We identify an implementation vulnerability in PyTorch’s Max Pool operation leading
to Class-Leakage, aiding an adversary to distinguish unknown labels of different inputs.

e We demonstrate a methodology where an adversary can exploit the Class-Leakage
vulnerability during the inference phase of a DL model to compromise the privacy of
victims by predicting unknown labels of their inputs that are directly linked to their
sensitive information using an MLP classifier.

¢ We demonstrate that a DL model secured using differential privacy can still be vulnerable
against an attack to get information about the training data, if the adversary has
additional information through timing side-channel-based Class-Leakage.

o We propose an easy-to-implement countermeasure to develop a constant-time Maz
Pooling operation by making minimal changes to the existing PyTorch library that does
not affect the accuracy of DL models.

o We evaluated all experiments on standard image classification benchmarking datasets
like CIFAR-10 and CIFAR-100 [KHT09] using CNN models like AlexNet [KSH12],
DenseNet121 [HLvdMW17], SqueezeNet [IMAT16], ResNet50 [HZRS16], and VGG19
[SZ15]. To validate the generalizability of the method in different computing environ-
ments, we performed all the experiments on both Intel Xeon and Intel i7 processors.

The rest of the paper is organised as follows: Section 2 presents a brief overview of
the necessary background. Section 3 introduces the data-dependent timing side-channel
leakage identified in PyTorch. Section 4 demonstrates a practical inference-time attack
using the timing side-channel leakage. Section 5 illustrates the vulnerability of differential-
private models using the timing side-channel leakage. Section 6 discusses a proposed
countermeasure to alleviate the timing side-channel leakage. Section 7 extends the threat
model proposed in Section 4 to mount a more practical end-to-end attack. Section 8
presents a brief discussion on disclosure of the vulnerability to Meta (Facebook) Al research.
Finally, Section 9 concludes the paper.
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2 Preliminaries on Convolution Neural Networks

Convolutional Neural Networks (CNNs) [AMAZ17] is a type of neural network specialized
in processing multidimensional data like images. CNNs derive their unique advantage
from their method of processing the data in a grid-like structure to extract useful features.
A basic CNN architecture has three main layers: convolution layer, pooling layer, and
fully-connected layer. We next provide a brief illustration of the Max Pooling layer, which
is pivotal in this paper.

Max Pooling: Pooling layers [GK20] provide a method

for down-sampling feature maps by summarizing the ex-

istence of features in patches of feature maps. There are s6|61[7

two types of pooling functions — Max Pool and Average 2|5[0]9|MaxPool |56 9
Pool. The pooling function is defined by kernel size, 7|4 32|21 fremel-@2) [ 12]32
stride, and padding. Kernel size is the window size of 9121 8 [ 8] pacang=o0

the sub-matrix on which pooling operation is applied Figure 1: Example of Max Pool-
on the feature map. In Max Pool, the maximum value ing operation

among all elements in the window is the output for that

window. Stride defines the step size of the window both

in the vertical and horizontal direction. Padding determines the number of extra rows and
columns with zero appended to the output matrix to regulate its size. Figure 1 shows an
example of Max Pooling operation with stride 2, kernel size of 2 x 2, and zero padding.

3 Timing Leakage Vulnerability in PyTorch

The Python-based Deep Learning (DL) library PyTorch, developed by Meta (Facebook)
AT Research, has recently found a growing interest in several industry-standard Al-
enabled products because of its dynamic graph creation, data parallelism debugging, and
developer-friendliness. The popularity of PyTorch even pushed several organizations to
replace famous DL stacks like TensorFlow with PyTorch as a core module in various
applications [Bal20, Car20]. Even though PyTorch is a prevalent and powerful library,
we have identified a data-dependent vulnerability that can leak class-label information of
inputs through the timing side-channel. The identified timing side-channel can lead to
serious privacy violations to the user base of a Machine Learning as a Service (MLaaS)
provider, which we have discussed later in Section 4. In this section, we first show the
timing leakage vulnerability in PyTorch-based Convolution Neural Networks (CNN). Then
we identify, demonstrate and analyze the source of timing leakage. In the following
subsection, we provide details on the experimental scenario and basic setup we used for
our analysis performed in this section.

3.1 Experimental Scenario and Setup

Scenario: We consider a remote cloud server that provides MLaaS to its clients, and the
cloud server uses PyTorch to implement its CNN model. We assume that a client has
hard-label black-box access to CNN, i.e., the client can only query CNN with input and
obtain classification output as a hard-label. In hard-label black-box access, a client can
only obtain actual labels and does not get any knowledge of probabilities associated with
predicted labels. We also assume that the client can monitor execution times during the
inference operation with user-level privilege. The scenario is briefly illustrated in Figure 2.
Setup: In order to first establish the timing side-channel leakage, we consider a custom
CNN architecture implemented using PyTorch (1.9.14cpu). The architecture of custom
CNN is provided in Table 2. We consider two widely-used standard image classification
benchmarking datasets, CIFAR10 and CIFAR100, for the evaluation. We also analyze
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several pre-trained CNNs implemented using PyTorch, namely AlexNet, DenseNet121,
SqueezeNet, ResNet50, and VGG19, to support the claim of timing side-channel leakage. In
order to validate the generalizability of timing side-channel leakage in multiple computing
environments, we perform all our experiments on an Intel Xeon (4 cores, Skylake) machine
with 16GB RAM and an Intel i7-4790 (4 cores, Haswell) machine with 16GB RAM. In
the following subsection, we provide an overview of the timing measurement strategy and
details on analyzing the timing.

3.2 Analysis of Timing Measurements

We use the perf_counter () [TIM] method from Python’s time library to obtain execution
time of a CNN during its inference operation for a particular input. The perf_counter ()
method can be invoked using user-level privilege. The code snippet in Listing 1 (Appendix
A inside supplementary material) is a sample example of obtaining the total execution
time of a forward propagation (i.e., inference operation of PyTorch library) for a sample
CNN model. The term ¢2 — ¢1 provides the overall inference time for input .

Let the inference time for any input k£ of class C; be denoted as t¢,,. We observe
te, , for N repetitions to obtain a distribution 7¢, , = {t¢, .12, .- - 30}, where tf s
the value of t¢, , at r-th repetition. We repeat the process for P different images for a
particular class C; to make the analysis more generalised over different input instances and
thus obtain the timing distribution Te, = {Te,, || Tess || - - - || Tei» }, where || is the append
operation and |7¢,| = PN. Let the number of classes in our analysis be Z. We thus
have a total of Z timing distributions. We take two timing distributions at a time and
perform ¢-Test on all pair of distributions (i.e., for (g ) pairs). For a pair of distributions
(Te,, Te;), we calculate the t-statistic [KHL11]. We report that a given input of class C; is
distinguishable from a given input of class C; if |t| > 4.5 with a confidence of 0.99999.

)%I Client k Layer Name Layer Type

: Input Layer Input
Monitor Input | | Predicted Layerl Convolution-16
inference Layer2 Convolution-32
Remote Layer3 MaxPool
Stoua Layer4 Convolution-32
MLaas Layerb Convolution-32
‘J Layer6 MaxPool
Layer7 Convolution-64
Layer8 Convolution-128
% %] ocoo % Layer9 Fully connected - 128
Layer10 Fully connected - 64
Client 1 Client 2 Clientn Output Layer Softmax

Figure 2: Experimental Scenario: A
client having hard-label black-box access
to a remote cloud-server providing MLaaS
through a CNN implemented on PyTorch.
The client can monitor execution time dur-
ing inference operation

3.2.1 Inference Time Analysis

Table 2: Custom CNN Architecture for CI-
FAR10 and CIFAR100. The filter size of
Convolution layers and the number of neur-
ons in Fully Connected layers are given after
layer names. MaxPool’s Kernel size = 3x3
and Stride = 2

We perform the inference time analysis, as discussed above, for the custom CNN mentioned
in Table 2. We observe that out of 45 class pairs in CIFAR-10, 42 class pairs can be distin-
guished. In CIFAR-100 out of 4950 class pairs, 4222 class pairs can be distinguished based on
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the inference time in Intel Xeon machine®. In Intel i7 machine, the results for CIFAR-10 and
CIFAR-100 are 37 and 3265, respectively. The high number of distinguishable pairs for both
datasets indicates data-dependent timing-leakage, generalized over different computing en-

vironments.

We perform the same analysis
on five different pre-trained CNN
models, as discussed in Sec-
tion 3.1, to investigate the ex-
istence of data-dependent tim-
ing side-channel leakage in other
CNNs. The results of inference
time analysis for all these mod-
els considering CIFAR-10 and
CIFAR-100 datasets for both In-
tel Xeon and Intel i7 machines
are shown in Figure 3a and Fig-
ure 3b, respectively. The ver-
tical axis in the figure represents
the total number of distinguish-
able class pairs for CIFAR-10 (red)
and CIFAR-100 (blue). We can
observe that most class pairs in
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Figure 3: Number of distinguishable class pairs using
timing side-channel in different CNNs on CIFAR10
(out of 45) and CIFAR100 (out of 4950) on (a) Intel
Xeon and (b) Intel i7

CIFAR-10 and CIFAR-100 can be distinguished in all these models using only the inference

time.

3.2.2 Layer-wise Inference Time Analysis

From the previous discussion we
observe that inputs from different
class labels can be distinguished
from each other based on inference
timing. In order to investigate
the source behind the existence of
this data-dependent timing side-
channel leakage, we perform the
same analysis using the execution
time of each layer during the infer-
ence phase. The code snippet in
Listing 2 (Appendix A inside sup-
plementary material) is a sample
example of obtaining layer-wise ex-
ecution time during the inference
operation of a sample CNN. We
accumulate different timestamps
into variable ¢ after the execution

0w 0
4 --- Random Guess | & --- Random Guess
© 45 © 45
a o
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2
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©
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Figure 4: Number of distinguishable class pairs (out of
45) using timing side-channel of each layer in Custom
CNN on CIFARIO0 with (a) Max Pooling (b) Average
Pooling

of each layer during forward propagation.

From the final values in ¢, we can compute the execution time of each layer by subtracting
adjacent values. We perform inference time analysis on custom CNN considering CIFAR-10
on Intel Xeon machine to obtain total number of distinguishable class pairs using execution
times of each layer. The result of the analysis is shown in Figure 4a. The vertical axis in the

5CIFAR-10 has images of 10 classes indicating a total of (120) = 45 class pairs, and CIFAR-100 has

images of 100 classes indicating a total of (100) = 4950 class pairs.

2
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figure represents the total number of distinguishable class pairs for each layer represented
in the horizontal axis®. We can observe that all layers can distinguish different numbers of
class pairs. In case on no timing leakage the layers will only distinguish approximately
around 50% pairs or less than that, which is equivalent to a random guess. However,
the Max Pooling layer (highlighted in red) can distinguish the mazimum number of pairs,
much greater than a random guess. Hence, it is considered to be the primary contributor
to observed timing differences using the overall inference time.

3.2.3 Timing Analysis with Average Pool

Average Pooling” is another very commonly used pooling function in CNN architectures,
hence we try to verify whether this vulnerability is limited to max pooling or found in
other pooling functions as well. We repeat the layer-wise timing analysis by replacing
all MaxPools in the Custom CNN model with Average Pool. The results are given in
Figure 4b. We observed that whereas the maz-pooling layers could completely distinguish all
class pairs, the average pooling layer was only able to distinguish less than fifty percent of
the class pairs, which is equivalent to random selection. Hence, we experimentally conclude
that Average Pool does not leak data-dependent timing information. We further explore
the cause behind the leakage in MaxPool in the next subsection.

3.3 Analysis on PyTorch Maxpool Implementation

The MaxPool function slides through defined kernel size matrices to get reduced feature
maps as shown in Figure 1. Ideally, the implementation of MaxPool should take constant-
time for all inputs. For the sake of performance optimization, libraries are usually designed
without much consideration given to constant-time implementation of functions, which can
be exploited using side-channels. In Figure 4a we observed that MaxPool can distinguish
between almost all class pairs, signifying the lack of constant-time implementation. Hence,
we delve into the PyTorch implementation of Maxpool function to analyze the cause of
the data-dependent timing leakage. The code snippet from PyTorch Github repository® is
shown in Listing 1.

if ((val > maxval) || std::isnan(val)) {

maxval = val;
maxindex = index;

Listing 1: PyTorch Maxpool’s code snippet to update max

The implementation uses an ‘if’ statement to get the maximum value for each pooling
window, which checks all elements and keeps updating the max value when it finds a greater
value. It also updates the index (mazindex) of the current max value. In Listing 1, val is
the value of the element at current index and mazval stores the value of the maximum
element found till now in the current window. For each window, the number of times
assignment operation inside if statement is executed depends on the position of the max
value in the window. Hence, the overall number of assignment operations executed inside
the ‘if’ statement differs for different inputs to Maxpool. This is illustrated in Figure 5
using an example. The yellow 3 x 3 windows represent the current window of the input
matrix on which the Maxpool is being operated. The bold green text emphasizes on the
indices of the matrix, for which the assignment operation inside the ‘if’ statement has
been executed. We see in the figure, that for two different inputs the assignment operation
inside the ‘if’ statement vary in both kernel-sized windows of both the inputs. The total

6We consider activation functions as separate layers.

7 Average Pooling reduces feature map dimension by averaging the values instead of finding maximum.

8PyTorch Github repository code snippet (line 65-68): https://github.com/pytorch/pytorch/blob/
bceb1db885cafa87fe8d037d8f22ae9649albbal0/aten/src/ATen/native/cpu/MaxPoolKernel. cpp#L65
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https://github.com/pytorch/pytorch/blob/bceb1db885cafa87fe8d037d8f22ae9649a1bba0/aten/src/ATen/native/cpu/MaxPoolKernel.cpp#L65
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MaxPool [Kernel: 3x3, Stride: 2]

' Input Class X P Input Class Y H
'
i 0.1 0 [0.12 0.5 0.23 0.1 0 /0.12]0.5|0.23 E E 0.41/0.56, 0 |0.91 045 041 056 0 0.91 045 E
E 0.3 045 0 |06 053 0.3 045 0 | 0.6 053 E E 0 02062 02 0.7 0 02 062 02 0.7 E
E 0209/ 0 (01 O 02 09 0 01 O E E 091 0 0 0 06 091 0 0 0 06 E
o '
E 0 06 0.1 054 0.73 0 06 0.1 054 0.73 E E 0.1 023 0 0.29 0.87 0.1 023 0 029 087 E
'
107 08 0 035 0 07 08 0 035 0 ! ! 0 07603 0 04 0 076 03 0 01
H Window 1 Window 2 L Window 1 Window 2 :
: # ig ecutions: 5 # i executions: 3 : : # i executions: 4 # Assignment executions: 2 :
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assignment executions for input X and Y differ from each other, hence causing difference
in the execution time of the MaxPool operation and the overall inference time of an input.

Since the number of times the assignment operations inside ‘if’ (branch not taken)
statement is executed depends on the input to the MaxPool function, it makes the
implementation dependent on the input data given to the MaxPool function. The input
data is resultant of multiple transformations (like convolution and activation operations)
applied to the original input provided to the DL model, hence there is a correlation between
the two, which indirectly makes the total number of assignment operations dependent
on the input to the model. Average Pool  does not contain such ‘if’ statement and thus
shows resilience to information leakage, which validates the results in Figure 4b.

3.3.1 Influence on Timing

In this work we show how an adversary can exploit this implementation vulnerability to
know the class labels of the input data using timing side-channels. It is possible because,
different class labels execute different number of ‘if’ statements inside the MaxPool
implementation. This causes a timing variation in the overall inference time for all inputs
hence aiding an adversary to distinguish among them the different class labels. It has a
significant impact on timing because almost 25% of the total inference time is taken by
the pooling functions (green) in our custom CNN model as shown in Figure 6a. From
the figure we can see that convolution operation (blue) takes the maximum time in the
inference (more than 50%) and the pooling is the second most time consuming operation.
We verify this with experimental analysis on the custom CNN model to do the analysis
which has two Maxpool layers. We get input tensors to both MaxPool functions for one

9PyTorch Github repository Average Pool code snippet https://github.com/pytorch/pytorch/blob/
bceb1db885cafa87fe8d037d8f22ae9649al1bbal/aten/src/ATen/native/cpu/AvgPoolKernel. cpp#L15


https://github.com/pytorch/pytorch/blob/bceb1db885cafa87fe8d037d8f22ae9649a1bba0/aten/src/ATen/native/cpu/AvgPoolKernel.cpp#L15
https://github.com/pytorch/pytorch/blob/bceb1db885cafa87fe8d037d8f22ae9649a1bba0/aten/src/ATen/native/cpu/AvgPoolKernel.cpp#L15
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image of each class. We calculated the number of ‘if’ statement executions (branch not
taken instructions) for all class images for both max pools. We compared these values for
all class pairs and observed that the results were directly proportional to the timing results
i.e., when the number of ‘if’ statement executions for an input class is higher than another
class, its execution time will also be higher. The results are shown in Figure 6(b) and 6(c).
Here T; and T} are median of inference time distributions of some class pair C; and C; and
BN; is the number of branch not taken (if statements execution) instructions executed by
max pool function for class C;. There are 45(10C2) pairs total, hence total of 45 cases
in the confusion matrices shown in Figure 6(b) and 6(c). High indicates when T; > Tj
and BN; > BNj;, whereas Low indicates vice-versa. For instance, the first confusion
matrix with 4 tiles in Figure 6(b), represents 4 cases. Top left tile indicates T; < T; and
BN; < BN; 20 out of 45 times, bottom right tile indicates that the other 24 times, T; > T}
and BN; > BN;. Top right tile with value 1 means, T; < T; and BN; > BN;, and no
cases with T; > T; and BN; > BN; both are aberrations. In Figure 6(c), Ambiguous
indicates the cases where we are not able to distinguish a pair based on timing or branches,
because they are almost similar for both classes of the pair. From the confusion matrices in
Figure 6 we can observe that, in majority of the cases the inference time T; of a class label
input 4 is greater than inference time 7} of a class label input j when branch not taken
instructions of the former is greater than the later and vice-versa. In the next section, we
discuss on a practical threat model where an adversary can exploit the class-leakage to
compromise user privacy.

4 Timing based MLP Class-Label Classifier

In the previous section, we identified the primary component responsible for timing leakage
in the PyTorch library, and the effect of such leakages is visible over several popular
datasets. But the observed non-constant timing behavior can lead to a practical end-to-end
attack. In the following discussion, we first define the threat model and then demonstrate
an attack to infer class labels of unknown inputs using the timing leakage.

4.1 Threat Model

Let us consider a scenario where multiple clients are connected to a trusted cloud server
providing Machine Learning as a Service (MLaaS), as demonstrated in Figure 7a. Clients
provide their private/confidential data to the MLaaS to get back classification results for
a particular task. The clients have no more than user-level privileges, but they could be
curious and possibly have malicious intention of knowing the private data of another client.
Given this scenario we present the capabilities and objective of the adversary as follows.

Adversary’s Capability and Objective: The adversary is considered to have a hard-
label black-box access to the DL model on the MLaa$S server with user-level privilege. The
adversary also has an access to a manifest dataset. Manifest dataset is a set of inputs
which may or may not be in the training dataset but belongs to the same distribution.
We consider this to be a realistic assumption because attacker and victim are both clients
of same MLaaS model, so apparently, they participate in inferences of resembling input
classes, signifying their distributions are congruent. This is a commonly accepted notion
in MLaaS [NSH19,PMG™17]. It is to be noted that, the adversary and the victim client
connect to the MLaaS server remotely over the network and have access to the same deep
learning model. The adversary does not have the ability to get timestamps of start and
end of image inference from inside the victim’s code. With these capabilities, adversary’s
objective is to infer class labels of input data fed by the chosen victim client to the MLaaS.
In addition, the adversary is also capable of launching a profiling attack using the timing
channel leakages. The adversary connects to MLaaS over an ssh connection and has no
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Figure 7: (a) Threat Model for Privacy Leakage in a Client-Server MLaaS Framework (b)
Attack Methodology: The process goes through three stages (i) Dataset creation Phase,
(ii) Model Building Phase and (iii) Attack Phase (The numbered circles indicate the order
of the process)

physical access to the system on which the ML model is deployed.

4.2 Timing Analysis in presence of Multiple Background Processes

We have demonstrated the timing leakage in a noiseless setting so far in our previous
discussion. We assumed that only one process executes in the system. However, in reality,
there can be multiple processes accessing the MLaaS at any point of time. Hence, the
parallel processes running in the background may also add execution noise to the inference
time of the victim process due to sharing of resources. Therefore, before moving on to
the profiling attack, we first verify the presence of the PyTorch timing vulnerability in
the multiple-process scenario where multiple clients access the MLaaS at the same time
and the spy tries to infer victim’s inference time without any communication among the
two. Since the adversary does not have access to timestamps for the starting and ending
of the inference operation from inside the victim’s code. Hence, the adversary requires a
mechanism to detect the start and end of the execution of the victim process. For this
purpose, the adversary can launch a script which constantly sniffs the executing processes
on the MLaaS server. In particular, this can be done by running a continuous script on the
server which monitors the processes running on the server, and as soon as the execution of
the victim process is detected the script starts a timer and stops it only when the execution
of victim process stops. In a Linux environment, the adversary can monitor the processes
with the help of the ps command which requires only user-level privileges. The adversary
can monitor victim execution using the PID of the victim process.

Experimental Setup: We consider n processes running on a single logical core for our
experiments. These processes are run in parallel using the fork system call. One of these
processes is the victim process, which runs inference function with a batch of images from
any particular class of the CIFAR-10 dataset. The spy’s objective is to know the class-label
of the image batch run by the victim. The other n — 1 processes run the inference function
as well for a batch of inputs, and the batch consists of random images from all classes.
The other processes can be considered as other users of the MLaaS server. The victim
process runs inference for any class input multiple times. In our experiments we take the
number of continuous inferences to be 1000. This is a reasonable assumption considering
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batch-inferences [Pat19] scenarios, for instance in healthcare industry and pharmaceutical
manufacturers where data privacy is crucial. In such applications, the client usually feeds
a batch of inputs from the same class for classification on the MLaaS. For instance, a
Covid-19 facility with multiple patients would daily feed the data of all patients to the
MLaaS to get the current Covid positive/negative status of each patient at once. It is
also not necessary for the victim to run the same image of a class while batch processing.
He can also run different images of the same class as well. We discuss this with more
practical experiments in Section 7. In the following discussions we consider the victim to
run multiple inference of the same input as a proof of concept to demonstrate the existence
of timing leakage in a noisy scenario. Further, another possibility is that the adversary has
the capability to mute responses on TCP from server which forces the client to re-infer
the same input multiple times. By default, the re-transmission timer is set to 240 seconds
(4 minutes), which can be modified to a lower value by the adversary, hence enabling
back-to-back re-transmissions of the same input.

Retrieving Total Execution Time: In our setup, we try to simulate a parallel environ-
ment by using the fork() functionality to execute n processes simultaneously, similar to the
previously discussed threat model. The time window between the entry and exit of a victim
process is monitored by the public PID information, during which a timestamp counter is
run to estimate the victim’s inference time. It may be noted, that the estimated time is
polluted by the execution times of the other n — 1 random processes. However, we show
that the victim’s inference time is exposed to the adversary because of the randomness
of the inferences performed by the other parallel processes whose times converge to the
means of the respective distributions.

Timing Analysis: We perform the same timing analysis as in Section 3.2 with the custom
CNN model by taking n = 4 and getting the timing values from the spy process. We
observe that 38 (84.4%) out of 45 class pairs are distinguishable in the noisy environment.
We confirm the viability of our results showing the vulnerability in the PyTorch library, by
proposing a profiling timing attack using a MLP classifier to mount an end-to-end attack.

4.3 MLP Class-label Classifier for End-to-End Attack

The objective of the attack is to analyze whether the MLP is able to learn the timing
difference among the different classes. We divide the process in three main parts: Dataset
creation, tuning and training the model, and testing the model on completely new data.
The complete process flow is performed using the manifest dataset and shown in Figure 7b.
Dataset Creation: Let the inference time for a particular input image k of class C; ,
selected from the manifest dataset be denoted as t¢, ,. We observe inference time t¢, ,
for N time instances to obtain a timing distribution 7¢, , = {tlci,k’tQCi,k’ e ’tgm} of that
particular input. Now repeating this procedure over all inputs of the class, we get T¢, , for P
different inputs of class C; from the manifest dataset, to get 7o, = {Tc, ., Tc, 0, -+ Teip }-
Next, representative timing points are generated by selecting the statistic value of the
respective distributions. Medians of all P distributions in 7¢, are denoted as Mg, =
{7¢, ., 7'51.12, Cey T0~p} This M, array makes one row of our dataset with class label C;.
It is to be noted, that we do not require to retrain for every different N, since we did one
training for the median of a distribution with N observations. To avoid underfitting, we
make our dataset bigger by repeating the same experiment for all classes Z times with
P =100, N =500 and Z = 1000 respectively. With Z = 1000, we get total of 10000 rows
in our dataset for 10 classes (1000 rows for each class). With P = 100, we have total 100
columns in our dataset, resulting in a final dataset of dimension 10000 x 100.

Model Training: The dataset as constructed with the representative median samples
are split into training (80%) and testing data (20%). We use Scikit-learn’s MLPClassifier
[PVGT12] to build our model. Further, to get the best fit for our model, we used
Scikit-learn’s GridSearchCV functionality which takes in a set of different parameters
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such as, activation functions, learning rate, and network size, and then returns the set of
hyperparameters which fit the model best in terms of accuracy. For our GridSearchCV
space we tested with following set of hidden layers: [(50,50,50), (400, 400, 400,50), (300,
300, 300,300), (200, 200, 200)and (350,200,100, 50)] and learning rates: [0.0001, 0.001,
0.01]. We fixed the activation function and optimizer to ReLU and Adam. Additionally,
to avoid over-fitting the model we used K-fold validation method where we chose K = 10.
Testing: The testing phase is carried out on the 20% test data which was not used while
training. We also test our classifier on a completely new dataset of 2000 rows containing
200 data points for each class label. We used the new data as a confirmatory test that the
model was not over-fitting on the split test data.

4.4 Results and Analysis

In this section, we give performance results of the MLP model, trained to classify class-
labels using model inference time. As discussed previously, we use MLP classifier with
10000 and 2000 (200 data-points for each of 10 classes) data-points for training/testing
and to check over-fitting of the model on fresh data respectively. The data-points are
built using inference time values from the image classification model for all classes. For
the CNN model, we again select the custom CNN model used in Section 3.2. (Refer to
Table 2 for the architecture details). We achieved classification accuracy of approximately
99.35% on our unused test data with 2000 inputs, from the class-label MLP classifier. In
Figure 8a, we show the confusion matrix for the classification of the test data. We see that
classes 0, 3, 4, 5, 6, and 7 are classified with 100% accuracy, and misclassification rate for
remaining classes is less than 2.5%. These results imply that the PyTorch vulnerability
can be exploited using the proposed profiling attack for an end-to-end attack.

Results for Multi-process Attack Scenario: We now show the results for the MLP
classifier attack when we work with the multi-process scenario. Earlier we saw in the
multiple process experimental setup (Section 4.2), that the victim runs 1000 inferences
of any class X, and n — 1 = 3 processes execute in parallel. The adversary collects the
overall execution time of all four processes combined. For the attack we create a dataset
of dimension 1000 x 100, where for each row the 100 columns consist of overall timing for
the four processes, calculated with 100 different images of the same class. Out of these
1000 data points, we separate out a test set of 200 data points. Rest everything remains
same as the attack in the previous section. The results are shown in Figure 8b. We get an
accuracy of 91% for our test data. For classes, 0, 2, 4, and 9 we get 100% classification
accuracy. Next, we discuss the timing analysis results and attack scenarios in the case
of differential-private models. We also show results for the attack with n = 8 processes,
in Figure 8c. It has been shown that the performance of deep learning inferences can
be significantly sped up in a single machine by spawning multiple worker processes in
vastly popular Amazon AWS framework. However, the performance does not improve
significantly after spawning more than eight processes. Hence, in our study, we considered
eight processes as a representative of a realistic setup [Wanl19]. We created a dataset of
dimension 1000 x 80 for the 8-process attack and observe an accuracy of approximately
83% for the test data of 200 data-points, showing that the classes are still distinguishable.
We observe a drop in accuracy because of increased noise caused by addition of more
processes, hence by increasing the number of inputs the classification can be improved.

5 Class-Leakage in CNN with Differential Privacy

In Section 3.2 we observed one aspect of PyTorch’s timing vulnerability, which is its
capability to leak information about the class labels. Now, in this section, we explore
another possibility of a certain kind of privacy leakage caused by this vulnerability. In



600 Exploiting Timing Channels to Compromise User Privacy in Deep Neural Networks

o oo o o0000010 o1 00 11 2 0 2 s
- ~-0/7 00 00 00 0 2 175 -1 00 0 0 0 0 0
~- ~-0 1EJo 0o 0 1 0 0 1 150 ~-0 O 2 0 0 0 2 0 10
Qm- @m-0 1 oo 0 0 0 0 0 s ©@m-0 0 o2 1 o0 0 1 125
Q Qo Qo
© - ®<-0 0 0 0 000 0 0 oo &w-0 0 0 oo o 0 0 100
- on-0 4 0 1 oo o o 1 @n-0 0 0 0 0 0 0 0
= > 75 > 75
Eo- Eo-00 000 11 0 o0 Ew©-00 110 2 1
~- ~-0/7 000 o0 oo o -so ~-2 1 00 0 1 0 1 0 | -50
o - ©-0 0 0 0 0 0 0 19 L. ©-0 0 0 0 0 o oo s
o - ®-0 0 0 0 0 0 0 20 ®-1 00 0 0 1 2 0 1
“““““ 00 S e w e w 0.0
0123 456 7 89 0123 456 7 89
Predicted label Predicted label Predicted label
(a) (b) (©

Figure 8: Confusion Matrix for timing test data on the MLP model (Custom CNN) in (a)
single process scenario (b) 4-process scenario and, (c¢) 8-process scenario

the introduction, we briefly discussed about membership inference attack, whose main
objective is to identify whether a pair of input and output of a model, belongs to the
training set used to train that model. The most common defense against this attack is
differential privacy. Differential Privacy adds a certain amount of perturbation to the
model hyper-parameters during the training process such that the model does not overfit
on the training data. The amount of noise added to the model can be tuned using a
parameter called privacy budget denoted by e. The privacy budget is used to balance
between model’s performance and its privacy protection capability.

It would be interesting to see if we train models with differential privacy, is there a way
to leak information about the training data using PyTorch’s vulnerability? To begin with,
we first verify whether the vulnerability persists after training our model with differential
privacy and then see how we can bypass it with the help of the attack proposed earlier.

5.1 Analysis of timing vulnerability with Differential Privacy

In this section, the experimental setup remains the same as Section 3.2 for all experiments.
Additionally, we modify the basic Custom CNN model and five other CNN models: Alexnet,
Resnet50, Densenet, VGG19, and Squeezenet, by training them with differential privacy.
For this purpose, we use Opacus'® [YSST21] library, a research initiative by Facebook to
provide differential privacy to DL models implemented on PyTorch. Next, we begin our
analysis by looking into the overall inference time for the differential-private model.

Analysing Overall Inference Time:  The experiment structure remains the same from
Section 3.2.1, as to analyze the effect of PyTorch vulnerability on our differential-private
models. The results are illustrated in Figure 9a. The results confirm that the majority of
the class pairs are distinguishable using the timing side-channel. In Table 3 we also compare
the percentage of class-pairs distinguishable by the CNN models when they are trained
with and without differential privacy. From results in Table 3 we also observe varying
distinguishable percentage for all models which is a result of the number of computations
from other layers creating noise in timing measurements.

Analysing Layer-wise Inference Time:  To further verify that the MaxPool function is
the source of leakage for differential-private CNNs as well, we do a layer-wise analysis.
Following the experiment steps similar to Section 3.2.2, the results are shown in Figure 9b.
On average, the six convolution layers are able to distinguish 18 class-pairs, the eight
ReLU activation distinguish 12 class-pairs and the three dense layers distinguish 20 class
pairs, which are all less than fifty percent. On the other hand, the two Maxpool layers

100pacus Github repository: https://github.com/pytorch/opacus
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Figure 9: (a) Number of class pairs distinguishable by different CNN models trained
with differential privacy on CIFAR10 (out of 45) and CIFAR100 (out of 4950) dataset
(Intel Xeon processor)(b) Number of class pairs (out of 45) distinguishable in each layer of
Custom CNN with Max Pooling trained with differential privacy(CIFARI10)

distinguish 43(95.5%) and 40(88.8%) class-pairs respectively. Hence, this again confirms
the fact that Maxpool function is causing the timing difference, for differential-private
CNNs as well. In the following discussion, we go one step further, launching the MLP
class-label attack on the timing dataset of differential private custom CNN.

Attack on Differential Privacy Dataset:

We have verified the constant presence of Table 3: Comparison of percentage of CI-
PyTorch’s vulnerability in differential pri- FAR10 and CIFAR100 class pairs distinguish-

vacy enabled CNN model from our timing aple by different CNNs with and without dif-
analysis experiments. Our last step in this ferential privacy

verification process is to check the effective- Overall Inference Accuracy
ness of our label classifier attack following | Model CIFAR10 CIFAR100
the steps in Section 4. Our attack gives a No DP | DP | NoDP | DP

. Cust 93.33 93.33 85.29 87.35
high accuracy score of 99.2%, and we can CKISNOIH % % %

now be sure that the noise added by Opa- [Alexnet | 64.44% | 73.33% | 65.00 | 79.25%
cus does not have any impact on timing Squeezenet | 64.44% | 80.0% | 73.89% | 84.26%
leakage. The test data we use has a total | Densenet | 73.33% | 68.88% | 71.03 | 75.15%
of 2000 data points, 200 for each class-label. | Resnets0 | 55.55% | 95.55% | 86.46% | 90.70%

. . . VGG19 75.55% | 84.44% | 55.29% | 61.45%
Figure 10a shows the confusion matrix for
the test data classification, which gives in-
formation about the true label of any class and also the predicted label of that class by the
classifier. From the figure, we can see that for all classes we get more than 98% class-label
classification accuracy. In the next section, we finally see how to leak information about
the training set by bypassing differential privacy.

5.2 Adversary Capabilities and Objective with DP-enabled MLaa$S

The threat model is typically a real-life scenario of multiple clients accessing a cloud server
that provides MLaaS where one amongst the many clients is considered to be adversarial,
but this time the DL model on the server is trained with differential privacy which protects
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Figure 10: (a) Confusion Matrix for timing test data on the MLP model with timing
values from custom CNN trained with DP (b) Threat Model for Privacy Violation in DP
Models

training data information leakage (Refer to Figure 10b). Additionally, the private training
data for the model is fed by the victim client accessing MLaaS, whereas the adversary
tries to gain information about the training data.

The adversary connects with the victim client on the MLaaS server and has hard-label
black-box access to the DL model with user-level privilege. The objective is to demonstrate
the violation of Differential Privacy (DP) by illustrating the overlap of the dataset @ (the
elements of which are mutually exclusive to the training set 7') with a previously trained
model, which should not be observed in an ideal DP scenario. The adversary infers the
victim client’s timing by the procedure as implied in Section 4.2. First, the adversary
obtains the timing required for training with its own set, say 7', and build the target
model, say M;. Subsequently, execution timing data of @) is observed by feeding it into the
model M. At this point, the adversary adaptively updates M; by providing the inputs
consisting of both T" and @ and builds the model M, and similarly gets the timing data
for inferring @@ by model Ms. It will be interesting to observe that whether the timing
data leads to the inference that () has been used in the original training data 7. It may
be emphasized that by the definition of DP, any statistics (in our case timing) gathered by
simulating with differential data (in our case T, and T" augmented with @), should not be
distinguishable. Violation of this indicates a breach of the DP guarantees.

5.3 Countering Differential Privacy by Distinguishing Inputs

From previous discussions, it is established that the PyTorch vulnerability persists even after

training DL models with differential privacy. In this section, we exploit this vulnerability

for the purpose of bypassing differential privacy to mount an attack to breach training

data’s privacy. As illustrated in Figure 11, we divide the complete process into three parts:

1. Train DP CNN Model with different training sets: The adversary takes the set T and
sends it to the victim client for training the MLaaS model using this dataset, to create
Model 1. Next, the adversary takes the set @) and feeds it to Model 1 for classification
and the inference time to create the training and test datasets for the MLP classifier.
Let us call the test set as S1. The adversary now sends the data @) to the victim for it
to adaptively update the MLaaS model by training it with additional data, and create
Model 2. Once again, the adversary collects the inference time of set @) using Model 2
to create a new test set for the MLP classifier S2.

2. Train MLP Classifier with Timing values from Model 1: Now, we have one training set
created with inference time values of @) from Model 1 and two test sets created using
timing values of @ from Model 1 and Model 2. The adversary trains the MLP classifier
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called Label Classifier, using the training set.

3. Compare Timing results for @ with both models using MLP classifier: Next, the
adversary feeds both S1 and S2 to the Label Classifier separately and compares their
classification accuracy. In our experiment, we take 1000 images (100 images of 10 class
labels) in set @ and achieve an accuracy of 99.25% and 82.32% for S1 and S2. We
observe that the S2 shows a reduced accuracy, indicating towards the fact that the
inference times for set @ with Model 1 and Model 2 differ from each other. Next, we
do an analysis for the case when the test data partially overlaps with the training data.

1 Train DP CNN Model with different training 2 Train MLP Classifier with 3 Compare timing results for Q with both models
sets Timing values from Model 1 using MLP classifier
r Ty [ !
1 . . Yy Training data (Timing 1 ' Test data (Timing data | | Test data (Timing data |*
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Figure 11: Bypassing Differential Privacy

Analysis with partial overlap of test and training data: In the previous experiment,
we trained Model 2 by adding the whole () image set and observed a drop in accuracy
of the MLP classifier which was trained with timing data from Model 1. Based on these
results, we try to verify if this also happens when only a subset of images from set @) are
added to the training dataset of Model 2. For our experiment, we start if 10% overlap of
set @ with the training set and go on till 90% by increasing 10% overlap each time. The
results are shown in Figure 12. We use the observation in Figure 12 as a yes/no test. If
there is even a slight overlap between the test and the training dataset the accuracy drops.
We do not see any increasing or decreasing trend in the
plot, but the accuracy has dropped for by a minimum
of 10% for all overlap ratios. We infer that even a \_\’\/\\/ }
slight amount of overlap of the test set with training

Drop in accuracy
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o
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set will reduce the accuracy of the classifier, which
can be exploited by the adversary to launch an attack.
In general, we can confirm from all the results
that the PyTorch vulnerability persists even after
applying differential privacy to the models and can 978 10 20 30 40 50 60 70 80 90 100
also be exploited to bypass differential privacy to leak Percent overlap with Training set
information about the training dataset. In spite of Figure 12: Accuracy of MLP
differential privacy, Membership inference attack is Class-label classifier (trained using
also feasible with this vulnerability, hence we need a dataset with no overlap) over in-
countermeasure to mitigate it. The best approach will creasing ratios of training and test
be to mitigate it at the root level, by rectifying the data overlap.
Maxpool function’s implementation, which we discuss
in the next section.
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o
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6 Proposed Countermeasure against Class-Leakage

In the previous section, we explored in depth the timing vulnerabilities in PyTorch and
developed attack methodologies to exploit them in a realistic framework. In this section,
the vulnerability caused by the Maxpool function is thwarted by proposing an update
to the existing implementation as a countermeasure. The idea is to patch PyTorch’s
maxpool2d() CPU function. PyTorch has multiple implementations of Maxpool functions
(including maxpoo12d()) for multiple types of input, devices, and applications, and this
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countermeasure could easily be implemented at all places. This section begins by explaining
the implementation of the proposed countermeasure in PyTorch, and later results of timing
analysis and MLP attack, run on mitigated PyTorch library are discussed.

6.1 Countermeasure Implementation

It was shown in section 3.3 that Maxpool’s implementation vulnerability is caused by the
difference in the number of executions of assignment statements inside the ‘if” condition.
To mitigate this, we replicated the ‘if’ statement’s functionality by adding a temporary
swap location replacing the code snippet in Listing 1 with Listing 2. In the fixed code, an
additional temporary array tmp_ arr is introduced which is declared above the outermost
for loop inside the cpu_maz_pool() function. In Figure 13 we show that after imple-
menting the countermeasure, assignment statement will be executed for every element of a
window, hence the overall number of assignment operations inside the maxpool layer will
be constant for all inputs. The yellow window represents the current window on which the
Maxpool operation is being performed, and the bold green numbers indicate the positions
at which the assignment operations are executed. For this example, we see that assignment
operation is run for all windows hence constant time for all inputs. With the updated
implementation, the input data dependency is removed completely, and therefore we claim
to get uniform inference times for all classes, which are illustrated in the next section.

tmp_arr [0] = val;
tmp_arr[1] = maxval;
s maxval = tmp_arr[(val < maxval)x1];
tmp_ arr[0] = index;
tmp_arr[1] = maxindex;
; maxindex = tmp_arr[(val < maxval)*1];

Listing 2: Proposed constant time updated code to PyTorch Maxpool code structure

MaxPool [Kernel: 3x3, Stride: 2]

' Input Class X . Input Class Y '
E 01 0 [0.12 0.5 0.23 0.1 0 |0.12| 0.5 |0.23 E E 0.41/0.56 0 0.91 045 0.41/0.56| 0 |0.91/0.45 E
. ' '
E 0.3 045 0 0.6 0.53 0.3 045 0 | 0.6 0.53 E E 0 02062 02 07 0 02062 0.2 0.7 E
E 0209/ 0 01 O 02 09 0 |01 0 E E 091 0 0 0 06 091 0 0 0 06 E
E 0 06 0.1 054073 0 06 0.1 054 0.73 E i 0.1 023 0 0.29 0.87 0.1 023 0 0.29 0.875

' '
i 07 08 0 035 0 07 08 0 035 0 E E 0 076 03 0 041 0 076 03 0 01 E
E Window 1 Window 2 E E Window 1 Window 2 :
. [ '

# Assignment i 9 # ig 1t executions: 9 # Assignment executions: 9 # Assignment executions: 9

Figure 13: An example of constant number of assignment operations for two different
inputs during Maxpool operation after implementing countermeasure

6.2 Mitigation of the PyTorch Vulnerability

In this section we explore the efficiency of the proposed countermeasure by repeating all
the timing analysis experiments done in Section 3.2, and the experiments were repeated
using the mitigation patched PyTorch library. We perform our experiments in a noiseless
setting, when only one process is running the inferences, and can calculate its inference
time from inside the process.
Analysing Overall Inference Time: Figure 14a shows timing analysis similar to
Section 3.2.1 for all six models (Custom CNN, Alexnet, Resnet50, Densenet, Squeezenet
and VGG19) implemented on countermeasure enabled PyTorch library.

Our decision criteria to distinguish class pairs is, when the number of distinguishable
pairs is less than 50%, it means that the adversary has a random chance of guessing the
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Figure 14: (a) Number of class pairs (out of 45) distinguishable by all CNN models before
and after implementing the counter measure (CIFAR10) (b)Number of class pairs (out of
45) distinguishable in each layer of Custom CNN with Max Pooling after implementing
the countermeasure (CIFARI10)

correct class labels. With the countermeasure, we observe that for all models with both
CIFAR-10 and CIFAR-100 the number of distinguishable pairs is less than 50%. From
this observation, we apparently make sure that the countermeasure implementation works
as it claims to be. Next, we dig deep with layer-wise analysis, to see the timing behavior
of the countermeasure on the exact source of leakage.

Analysing Layer-wise Inference Time: Having a working countermeasure we verify
its effectiveness using the layer-wise analysis by following the experiment steps from Section
3.2.2. In Figure 14b we observe that the number of distinguishable pairs in the max pool
layers has decreased to 7 and 14 from 43 and 40 in Figure 4(a). In the upcoming section,
we verify the countermeasure’s compatibility with differential-private networks.

Impact on model performance: The countermeasure implementation increases branch-
ing statement executions from before. Hence, there is a slight increase in the execution time
(approximately 1-2 ms for a single inference) but no degradation in the model accuracy.
Cautionary Note: Our countermeasure only reduces the attack surface as other opera-
tions are still vulnerable albeit with more effort. Even constant time codes can be exploited
in future with newer techniques like [WPH22].

6.3 Mitigation of Class-Leakage in Differential Privacy

In Section 5.3, we demonstrated how differential privacy can be bypassed by exploiting
Python’s vulnerability, hence it becomes important to verify our countermeasure against
the PyTorch models which are trained with differential privacy using the Opacus library.
Analysing Overall Inference Time: Once again we start by analysing the overall
inference timing for all six differential-private models (Custom CNN, Alexnet, Resnet50,
Densenet, Squeezenet, and VGG19). In Figure 15a, the number of distinguishable pairs
once again reduces to less than 50% of the total pairs for all the models, hence confirming
the effectiveness of our countermeasure for differential-private networks as well. Next, we
explore the attack using MLP with countermeasure enabled in PyTorch.

6.4 Attack with Countermeasure

In Section 4.4 and Section 5.1 we saw that MLP class-label classifier gave high accuracy
for custom CNN model trained with and without differential privacy. Now, in this section,
we again launch the attack with implemented countermeasure.
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Figure 15: (a)Number of class pairs (out of 45) distinguishable by all CNN models trained
with differential privacy before and after implementing the countermeasure (CIFAR10)
(b)Accuracy of MLP model using inference time dataset of Custom CNN model

Attack on Custom CNN Dataset with Countermeasure: To confirm the effective-
ness of our countermeasure, a new dataset for the MLP is created with the mitigated
custom CNN model using the steps we discussed in Section 4. The MLP is trained with
the dataset and then the classes of test data is inferred. Results show a tremendous drop
in the accuracy from 99.35% to 12%, hence proving the viability of our countermeasure.
Attack on Differential Privacy Dataset with Countermeasure: Next follows the
efficacy of our countermeasure on the dataset created using differential private custom
CNN. We see a drop in accuracy from 99.25% to 13.2% which indicate towards random
classification, meaning the model is no more able to classify among the different class label
inputs. This shows that our countermeasure works perfectly in all scenarios. Figure 15b
shows a comparison for attacks on both normal as well as differential private datasets.

7 Batch Inference Timing Analysis with Different Images

We have demonstrated in Section 4 how a label classifier can be developed using the
observed timing leakage to mount an end-to-end attack even in a noisy scenario where
multiple processes execute in the background. The attack involves the victim process
running inference for the same image of a particular class 1000 times. In this section, we
discuss a scenario where instead of running inferences for the same image multiple times,
the victim can infer different images of a particular class only once in batch inferences. All
the setup and other assumptions remain the same, as discussed before in Section 4.

7.1 Individual Timing Analysis on Batch Inferences

For this analysis, we select K images corresponding to each class from the CIFAR-10
dataset. We run individual inferences for all K images of each class and monitor their
individual inference time. As a result, we obtain 10 timing distributions corresponding
to each class, with each distribution consisting of K timing values. This analysis aims to
inspect whether these 10 timing distributions are distinguishable from each other or not.
We consider K = 2000 for our experiment. Figure 16a shows the frequency plots for the
10 distributions formed using 2000 timing values from each class. The vertical dotted lines
indicate the mean of the corresponding distribution. We observe that the distributions are
distinct with different mean values, demonstrating the existence of data-dependent timing
leakage for different classes, even if we consider different images, due to the non-constant
time implementation of the MaxPool operation.
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Timing Analysis in Noisy Setup: The previous analysis shows the existence of timing
leakage in a noiseless setup, i.e., when no other process runs in parallel while the inferences
are performed. Next, we perform the same analysis in a noisy setup with a total of n
processes running simultaneously, including the victim process. We consider two scenarios
for n = 4 and n = 8. In each scenario, we consider the batch size of 2000 images for
each class. We show their frequency plots in Figure 16b and Figure 16¢, respectively. We
observe that even in the noisy setup, the distributions of the 10 classes are still distinct,
and the order of class-timings is the same as what we observed in Figure 16a. From
Figures 16a, 16b, 16c we infer that all images of a given class have got related timings,
hence we see ten different clusters for the ten classes of CIFAR-10. The leakage from
multiple images inferred in batches can be exploited to launch an end-to-end attack to
obtain the class label of a particular batch of inputs. Next, we analyze the consistency
of multi-image batch inference timings by ranking each class based on their cumulative
timing from all images in the batch.
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Figure 16: Frequency plots for 2000 CIFAR-10 image inference timings for 10 classes with
(a) no parallel process, (b) 4 parallel processes and (c) 8 parallel processes

7.2 Cumulative Timing Analysis on Batch Inferences

The analysis in the previous subsection requires individual inference timings of K = 2000
images which are challenging in practice, especially in batch inferences. In addition, the
noise from other background processes may also affect the individual timing values. Hence,
for this analysis, we consider the cumulative sum of inference times for all images in a batch
instead of individual timing values. We obtain a vector of dimension 10 corresponding to
each class of images. Further, we sort the timing values in the vector in ascending order
to get the ranking of each class for creating a timing template for the classes. Figure 17
shows the consistency of these class ranks with two separate experiments. First, we select
a batch with K = 2000 images for each class and repeat the batch inference for the chosen
batch 10 times. We compute the sum of individual inference times of each image for a
particular batch in each run, resulting in a total of 10 vectors for 10 different runs. The
ranks of batches belonging to different classes for each run based on the cumulative timing
value are shown at the top of Figure 17. The purple color indicates the ranks which are
not consistent.

We observe a consistent ranking 80% (80/100) of the time. In the next experiment,
we select 4 different batches of 2000 images at each run instead of repeating the batches
multiple times and perform a similar ranking analysis as the first experiment. We obtain
four vectors of dimension 10 corresponding to four different runs. The ranks of batches
belonging to different classes for each run are shown at the bottom of Figure 17. We
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observe a consistent ranking 80% (32/40) of the time in this experiment as well, similar to
Figure 17. The few inconsistent rankings are for classes with closely overlapped timing
clusters, as seen in Figure 16a.

8 Vulnerability Disclosure

We reported the observed data-dependent tim-
ing side-channel leakage due to improper non-

constant time implementation of Max Pooling Class Ranking based on 2000 image timings
operation in PyTorch to Meta (Facebook) Al Lowest Highest
research (developer of the PyTorch library) on rRin1|[0[2|4|1]|3|6|5[8[7]|9
16 January 2022. We received an acknowledg- Rin2| 02|14 |3|6|5|8|7]|9
ment for reporting a valid issue on 14 February rn3| 02|14 |3|6|5|8|7]|09
2022. Quoting their exact words: “We have rmalol2]1]al3l6|5]8|0]7
discussed the issue at length and concluded that, ks 0211 al3la|s]s|7]0
whilst you reported a valid issue which the team amsl 210114653879
may make changes based on, unfortunately your wnrl0l21 114653870
report falls below the bar for a monetary reward.” - IR
We further reported the practical attack on user . RN naE
privacy exploiting the data—deper.lq.ent tlrr.nng o2 Tal3le s a7 s
side-channel leakage, the vulnerability of differ-
ential private deep learning models against mem- Class Ranking based on different 2000 image batches
bership inference attacks exploiting the same Lowest Highest
timing-channel, and the countermeasure to al-  imageo-200| 0 |2 |4 |1 |6 |3 |58 7|9
leviate the data-dependent timing side-channel. image1000-3000/ 0 | 2 |4 |1 |3 |8 |6 |5 |7 |9
Image 2000-4000f O [ 2 | 1 [ 4 |3 [8 |6 5|7 |9
Image 3000-5000{ O [ 2 | 4 [ 1 [3 [6 |85 |7 |9

9 Conclusion

In this paper we bring forward for the first time, Figure 17: (top) Rank analysis of classes
a potential privacy threat found in the PyTorch  gver 10 runs after summing the timing of
library caused by timing side-channel leakage, 9000 images of each class label. (bottom)

which an adversary can exploit to get the input Rank analysis of classes with 4 different
class of the data being fed to a neural network. gubsets of 2000 images from each class.

The source of leakage was diagnosed to be the

Maxpool layer of the network. The vulnerabil-

ity caused by this leakage can be exploited to

classify class labels of the inputs by training a

MLP classifier with statistically processed inference time dataset. This was further utilized
using the MLP classifier to bypass differential privacy to identify whether a set of inputs
to the model belongs to CNN model’s training dataset. Finally, we propose an inexpensive
yet effective implementation as a countermeasure to thwart such timing vulnerability. Our
current attack only works when the victim infers inputs from the same class hence for
future work, we would like to extend our attack for the scenario where the victim runs
inferences of different classes.
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