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Abstract. We study the success probabilities of two variants of Correlation Power
Analysis (CPA) to retrieve multiple secret bits. The target is a permutation-based
symmetric cryptographic construction with a quadratic map as an S-box. More
precisely, we focus on the nonlinear mapping χ used in the Xoodoo and Keccak-p
permutations, which is affine equivalent to the nonlinear mapping of Ascon. We
thus consider three-bit and five-bit S-boxes. Our leakage model is the difference
in power consumption of register cells before and after one round. It reflects that,
in hardware, the aforesaid cryptographic algorithms are usually implemented by
deploying a round-based architecture. The power consumption difference depends on
whether the targeted bits in the register flip. In particular, we describe two attacks
based on the CPA methodology. First, we start with a standard CPA approach, for
which, to the best of our knowledge, we are the first to point out the differences
between attacking a three-bit and a five-bit S-box. For CPA, the highest correlation
coefficient is the most likely secret hypothesis. We improve on this with our novel
combined Correlation Power Analysis (combined CPA), or Snake attack, which uses
quadratic map cryptanalysis (e.g., of the function χ) to achieve a better attack in
terms of the number of traces required and computational complexity. For the Snake
attack, sums of absolute or squared values of correlation coefficients are used to
determine the most likely guess. As a result, we effectively show that our proposed
Snake attack can recover the secret in n22 (or n22 +n) intermediate results, compared
to 22n for the CPA, where n is the length of the targeted S-Box. We collected
power measurements from a hardware setup to demonstrate practical attack success
probabilities according to the rank of the correct secret hypothesis both for Xoodoo
and Keccak-p. In addition, we explain our success probabilities thanks to the Henery
model developed for horse races. In short, after performing 16,896 attacks, the
Snake attack or combined CPA on Xoodoo consistently recovers the correct secret
bits with each attack using 43,860 traces on average and with only 12 correlations,
compared to 61,380 traces for the standard CPA attack with 64 correlations. The
Snake attack requires about one-fifth as many correlation values as the standard CPA.
For Keccak-p, the difference is more drastic: the Snake attack recovers the secret bits
invariably after 771,600 traces with just 20 correlations. In contrast, the standard
CPA attack operates on 1,024 correlations (about fifty times more than the Snake
attack) and requires 1,223,400 traces.
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1 Introduction
Side-channel analysis enables the exploitation of weaknesses in the physical implementation
of cryptographic primitives that may leak secret data. Indeed, the physical behavior of
an electronic device, e.g., its power consumption or electromagnetic radiation, carries
information about the processed data and internal operations. An adversary that can
measure such a physical leakage presents a significant threat to devices that manipulate
sensitive information. More precisely, by analyzing the power consumption, they1 can
retrieve parts of the secret with methods like Differential Power Analysis (DPA) [KJJ99]
or Correlation Power Analysis (CPA) [BCO04]. If countermeasures are insufficient, an
adversary could practically decrypt messages or forge an authentication code, although
the primitive is secure. The cryptographic community, therefore, aims to find sound
countermeasures [BDPVA10,BNN+15,ABP+18,PAM19,ZSS+21].

In this work, we investigate, with CPA, the security of a device that implements a
permutation-based cryptographic algorithm with an S-box based on a quadratic map, i.e.,
has algebraic degree two. An S-box is the nonlinear layer of a round function in a symmetric
cryptographic algorithm. We chose to study quadratic maps partly because research work
aimed at classifying n-bit S-boxes in affine equivalence classes to find optimal S-boxes found
an interest in quadratic maps (n ∈ N, n ∈ [1, 6]) [BBS17,DC07,LP07,ZBRL15,MB19].
Moreover, they are reasonably simple to manipulate for our proposed CPA attacks, which
exploit the algebraic expression of the S-box.

Our electronic device has a register that stores intermediate data that is updated after
each of the aforementioned rounds. That is because permutation-based algorithms are
implemented with a round-based architecture. We aim to quantify the gain in attack
success probability between exploiting the leakage of multiple storage cells of a register
state at once and the combination of the individual leakage of those cells for different
S-box sizes. The first attack corresponds to the standard CPA, and the second is our
newly proposed combined CPA strategy. The aim is to explore the difference in success
probability and computational complexity between those two attacks, for small S-boxes,
with simple assumptions.

We focus on the function χ, as it was shown in [Dae95] to be the quadratic function
with the most interesting properties to provide resistance against differential and linear
cryptanalysis. The function χ is used in the Keccak-p [BDPV11] and Xoodoo [DHVV18]
cryptographic permutations, which are at the core of cryptographic algorithms such
as Keccak/SHA-3 [Dwo15], Keyak [BDP+16b], Ketje [BDP+16a], Xoofff [DHVV18] or
Xoodyak [DHP+20] NIST Lightweight Cryptography competition finalist. The function
operates on a group of five bits in Keccak-p and on one of three bits in Xoodoo. We apply
thus our attacks on five-bit and three-bit S-boxes, which are instances of the mapping χ.

Contribution. Earlier work by Bertoni et al. [BDD+12] considered the security of the
function χ for a single register cell against DPA using simulations. They studied the power
consumed to retrieve two bits of the secret after one round of the Keccak-p permutation.
Samwel and Daemen [SD17] extended this work by targeting the five secret bits of a Keyak
(Lake Keyak) S-box with DPA.

• We extend and formalize the previous analyses by proposing a methodology to target
n register bits, which are iteratively updated by a cryptographic round function. For
that purpose, we improve the leakage model from [BDD+12,SD17] in Section 3 to
adapt it to the Gaussian additive noise model [MOS11] for our round-based hardware
architecture (Section 2). Additionally, Samwel and Daemen [SD17] proposed to
partition the power consumption values according to the values of the messages in

1We use the singular ‘they’ as a gender-neutral pronoun for the attacker throughout the paper in an
effort to be inclusive.
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order to exploit the leakages of several register bits: we formalize and generalize this
idea to any S-box size that uses a quadratic map.

• In Section 4, the standard CPA attack is detailed for the first time for the quadratic
map χ, to the very best of our knowledge. We further present the combined CPA
strategy, which aggregates individual leakage information from multiple register bits
by exploiting the cryptanalysis of the function χ. We nickname it the ‘Snake attack’
because of the visual representation of the combination of individual leakage bit
results to retrieve several secret bits.

• In Section 5, we present a method for determining the rank of the solution secret
hypothesis for an attack strategy, and derive from it the probability of success.

• We provide practical success probabilities in Section 6 for our hardware setup. We
argue that our results follow the probability Henery model [Hen81], which was
originally proposed to model horse races.

In conclusion, for our three-bit and five-bit S-box, the combined CPA, or Snake, attack has
a higher probability of success than CPA for the same number of power traces, i.e., power
consumption measurements, while, most importantly, having fewer correlation results to
manipulate. Indeed, after performing 16,896 attacks, combined CPA on a three-bit S-box
unfailingly recovers the secret solution bits starting from 43,860 power traces with simply
12 correlation values, compared with 64 correlation results and 61,380 power traces for
CPA. The difference is even more noticeable for a five-bit S-box, since combined CPA
consistently determines the secret bits from 20 correlation results after 771,600 power
traces. In contrast, the standard CPA attack only does it after 1,223,400 power traces and
requires 1,024 correlation results. In a nutshell, the Snake attack or combined CPA has
the advantage of manipulating fewer intermediate steps at once than the classic CPA to
ease the effort of side-channel analysts.

2 Hardware Architecture
We consider a hardware implementation of a permutation using a quadratic map as
an S-Box for our CPA attacks. In the remainder of this paper, we focus on the well-
known function χ, which is investigated for its interesting differential and correlation
properties [Dae95,MPLJ19,DMM21], or more generally for its state diagram [SD23], to
find potential distinguishers for cryptanalysts. Multiple cryptographic schemes are based
on permutations like Keccak-p [BDPV11,Dwo15] or Xoodoo [DHVV18], which use the
function χ to have a simple nonlinear layer. The previous permutations are well-studied in
the cryptographic community [LSL21,LIMY20,LQT19,GPT21,EME22].

2.1 Permutation
We study the function χ in a permutation-based cryptographic scheme, namely the sponge
construction [BDPV08]. This construction is an iterative construction that applies a
permutation f several times. The permutation consists in itself of a round function that is
applied iteratively to an array of bits or state. The round function contains a linear layer
λ and a nonlinear one. The latter comprises mappings χn in parallel on arrays of n bits.

Definition 1 (Function χn). Let n be an odd integer. Let i ∈ Z/nZ be an index to
designate the i-th bit in a binary sequence of length n. The function χn : Fn2 → Fn2
restricted to a n-bit array and applied on the bit xi is

χn(x) �i = xi ⊕ (xi+1 ⊕ 1)xi+2 .
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The length n of a sequence to which χn is applied, depends on the permutation used
in the cryptographic scheme. We use the generic term sequence to refer to the said n bits
to be permutation-agnostic.

Xoodoo. The permutation Xoodoo [DHVV18] applies a round function to a 384-
bit state consisting of of 128 columns of three bits. The round function of Xoodoo is
decomposed in two linear mappings θ and ρwest, followed by the addition of a round
constant ι, then the application of the nonlinear mapping χ, and another linear mapping
ρeast. The nonlinear mapping χ is applied to the individual bits xi of a column. Therefore,
in our notation, it corresponds to applying the function χ3 on a binary sequence of three
bits.

Keccak-p. The permutation Keccak-p, as specified by the NIST SHA-3 standard [Dwo15],
is defined over a state of 5 · 5 · 2l bits with l ∈ N, l ∈ [0, 6], with a number of rounds
being equal to 12 + 2l. The state is organized in an array of five rows times five columns
times 2l lanes. The round function of Keccak-p is composed of five mappings: three linear
mappings θ, ρ, and π are first applied, followed by the nonlinear mapping χ and the round
constant addition ι. The nonlinear mapping χ is applied on the bits xi of a row, which
corresponds to the application of χ5 on a binary sequence of five bits in our notation.

Henceforth, we consider five-bit and three-bit sequences to focus on χ3 and χ5. As an
additional remark, we focus on the function χ in this paper, not only for its simplicity and
its interesting properties for symmetric cryptography but also because we know that all
invertible quadratic functions operating on three bits are affine equivalent2 to χ3 if all
their three functions restricted to one bit are quadratic. Therefore, this nonlinear function
is the best candidate to test and present our CPA attacks on small S-boxes. On a side
note, according to De Cannière [DC07], there are three affine equivalence classes for this
size of S-box. They are made explicit in the work of Bilgin et al. [BNN+15]. A well-known
example used in symmetric cryptography for a slightly larger S-box is the five-bit S-box of
Ascon [DEMS21], winner of the NIST Lightweight Cryptography competition, which is
affine equivalent to the S-box of Keccak.

2.2 Round-Based Hardware Architecture
We consider an electronic device with a round-based cryptographic algorithm implemented
without protection. Its hardware architecture comprises a register composed of storage
cells. The round logic performs the round function on the register state and updates it
with the output of the round function, as depicted in Figure 1. This circuit computes an
r-round permutation in r cycles. We keep the architecture as simple as possible to better
understand how to optimize standard power attacks in such an elementary setup.

Register

M

Nonlinear
Layer

Linear
Layer

Round logic

Figure 1: The round-based hardware architecture.

Before performing the first round, it is assumed that the register contains a secret K
that results from earlier processing, e.g., the absorption of a key. Then, a message M is
added to the register state once before applying the first round function. The message M
has the same length as the secret K. The sum of the secret and the message M ⊕K is

2Two n× n-bit invertible S-boxes S1 and S2 are affine equivalent if there exists two affine invertible
mappings A and B satisfying A ◦ S1 ◦B = S2. The affine mappings can be written as A · x + a where A is
a n× n invertible matrix over F2 and a is a n-bit constant [DC07].
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the input of the round logic. The linear layer λ, which we do not detail for the sake of
generality, is applied to this value to generate the input to the nonlinear layer. We then
define two intermediate variables µ and κ in order to set-up our attack.

Definition 2 (µ and κ). Let µ and κ be, respectively, the n bits of λ(M) and λ(K) that
are input to the targeted sequence χn.

The input of the considered sequence χn is µ⊕ κ with κ constant to be more specific.
The register stores the output of the round logic that equals χn(µ⊕ κ) for one sequence
χn after the first round. The presented architecture is an implementation without round
constants for the sake of simplicity.

3 Correlation Power Analysis
Cryptographic operations are performed in electronic devices where data is stored in
registers that are a collection of flip-flops. A flip-flop can be thought of as a cell that stores
a binary digit. When the state of the flip-flop is changed, i.e., the stored bit is switched, a
certain amount of power is applied to perform the change. In contrast, switching power is
not required if the state is maintained.

The power consumption of an electronic device is a function of the binary data processed
by the circuit, but in a complex manner. It has noisy behavior, partly due to the difficulty
of accurately modeling the power consumption and inherent non-deterministic effects.
However, the correlation between the power consumption and its switching activity can
be measured and exploited to reveal some cryptographic secrets using a statistical attack,
such as DPA [KJJ99] or CPA [BCO04]. For those attacks to work, the measured power
consumption must depend on known data and constant secret bits.

We consider as an example the circuit presented in Section 2.2 and an attacker that
targets one flip-flop that stores a single bit of the state. This bit is updated after every
round. The adversary performs a CPA attack to exploit the leakage due to the switching
of the said flip-flop after one round. The stored bit is denoted by br, with r the round
index. For the cipher, we can express the value of br after one round as a simple algebraic
expression that depends on a known message and a constant secret at the input. Then,
the adversary measures the power consumption for many cryptographic computations for
the same secret but with different, known messages. A sequence of instantaneous power
consumption measurements for a single message is commonly called a power trace. The
adversary then computes b1 ⊕ b0 for each power trace with the known input message and
with a hypothesis on the secret bits. Each of these hypotheses now has an array of bits
representing whether the target bit changed or not. If the secret hypothesis is correct,
the value b1 ⊕ b0 is also correct, and the traces where the bit flips (i.e., the sum results
in 1) consume on average more power than the ones for which the bit does not flip (i.e.,
the sum is 0). Otherwise, for the incorrect hypotheses, the value b1 ⊕ b0 usually does
not correlate well with the power consumption, depending on how much nonlinearity is
involved in the round function. In other words, the most likely secret hypothesis is the
one that maximizes the correlation between the array of hypothetical bit (non-)flips and
the power consumption.

The presented attack can also be generalized to target multiple bits at once. Intuitively,
the more bits flip at once, the more power an electronic device consumes. Let bir be the i-th
bit in the r-th round. Then, for targeting ` bits at once, the adversary can use

∑`
j=1 b

j
1⊕b

j
0

(for each hypothesis of the secret) to correlate with the power consumption. Again, the
hypothesis that maximizes the correlation is deemed the correct one.

We aim to understand the CPA attack strategy that uses fewer power traces and
computational complexity while targeting a quadratic map operating on a few bits to
retrieve multiple secret bits and making simple hypotheses. More precisely, what is the
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gain in success probability between extracting information from the power consumption
of multiple register cells and combining those said cells individually for quadratic maps
operating on different sequence sizes? To this end, we describe a leakage model based
on [BDD+12].

3.1 Activity Function and Leakage Model
We assume the adversary knows the messages Mj that correspond to j specific traces
and can compute µ for each message, which is the bits of λ(M) that are input to a χn
sequence (Definition 2). The attacker exploits the power consumption of m storage cells,
with m ≤ n, between the initial register state at time t0 and the state after the first round
at time t1 where n is the length in bits of an S-box, i.e., binary input sequence. In this
study, m is a parameter to determine whether we target the signal power consumption
of individual bits (m = 1), or all the bits of the first sequence χn at a time (m = n with
n ∈ {3, 5} in this paper).

Definition 3 (K ′). Let K ′ be the m targeted bits of the register at time t0 that stores
the secret K. We denote by K ′i the i-th bit of K ′.

Ultimately, the adversary aims to recover K ′, but depending on the attack strategy,
they might only be able to recover κ at first. We now consider that the adversary aims
to recover the secret (K ′, κ). The hardware architecture and attack parameters are
depicted in Figure 2, where the targeted secret bits correspond to the first S-box in this
example. Note that this is a widespread architecture for implementations of Xoodoo,
and Keccak-p in Field-Programmable Gate Arrays (FPGAs) and Application-Specific
Integrated Circuits (ASICs).

K ′
m
bits

Register state
at t0

M

λ

Linear
layer

µ + κ

...

χ

...

χ

n bits

Non-linear
layer

χ(µ+ κ)

...

m
bits

Register state
at t1Power consumption

(traces)

Figure 2: First round of the first permutation. The unknown variables and states to the
attacker are in red, what the adversary knows is in green, and the scope of this study is in
blue. The gray area contributes to the noise in our model.

We use a simple leakage model for the m register cells [BDD+12], sometimes denoted
as the Hamming distance power consumption model [PSDQ05,BCO04]. It counts the
number of bit flips between time t0 and t1. The power consumed to flip a bit value, i.e., to
change a 0 into a 1 and vice versa, is assumed to be higher than keeping the same value
over time. It also supposes that all cells contribute equally to the power consumption and
that the transitions 0→ 1 and 1→ 0 lead to the same value. Under these assumptions,
we define the activity function di(K ′i, κ, µ) ∈ F2 for one bit in Definition 4. If the bit value
flips, it equals 1, otherwise, it equals 0. To compute the Hamming distance between the
first m bits of the state at time t0 and t1, we sum the outputs of the activity function of
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those bits in Definition 5. We thus obtain the power consumption of the first m bits; it is
our signal. It should be noted that the round constants, which are not described here for
the sake of simplicity, shall be included in the activity function in practice.

Definition 4 (Activity function). For i ∈ Z/nZ, let K ′i be the i-th bit of the secret register
state. Let di ∈ F2 be the expression of the activity of the i-th bit after the first round:

di(K ′i, κ, µ) = K ′i ⊕ κi ⊕ µi ⊕ (κi+1 ⊕ µi+1 ⊕ 1)(κi+2 ⊕ µi+2) .

Definition 5 (Signal power consumption). The signal power consumption S ∈ R depends
on the m bits at time t0 and the intermediate variables µ and κ,

m ∈ {1, n} : S(K ′, κ, µ) =
m−1∑
i=0

(−1)di(K′
i,κ,µ) .

In Definition 5, if a bit xi flips, the corresponding element of the sum is −1, and
otherwise +1. By doing so, the model is balanced. Summing the elements (−1)di(K′

i,κ,µ)

m times encodes the number of bit flips of the targeted m bits stored in the register stage.
This definition of signal power consumption makes it possible to recover our secret in our
measurements from the hardware setup, as it heavily depends on the secret values. If the
adversary wants to target one bit of the secret, they choose m = 1 to capture the signal
value of one bit; otherwise they take m = n to recover all the secret bits K ′, which are
inputs to the targeted S-box.

As we focus on one sequence χn at a time, we consider that the power consumption of
the remaining sequences of χn contributes to the overall noise in our model. We define Rj
as the noise power consumption of a trace j from the non-targeted sequences χn and other
parts of the electronic device, in Definition 6.

Definition 6 (Noise power consumption). We assume the noise power consumption is a
random variable drawn from a zero-mean normal distribution with variance σ2 for a trace
j. It is independent of the intermediate variables µ and κ:

Rj ∼ N (0, σ2) .

The power consumption Pj of a single trace is described with the Gaussian additive
noise model [MOS11] in Definition 7. It is characterized by a random variable drawn from
a normal distribution with variance σ2 and mean S 6= 0.

Definition 7 (Power consumption). We define the power consumption for a secret (K ′, κ)
to be the sum of the signal part and the noise part for a trace j and a message Mj , such as

Pj(K ′, κ, µ) = S(K ′, κ, µ) +Rj with µ = λ(Mj) .

The above definition makes it possible to model real experiments in a simple manner
accurately. At last, we take advantage of the simplicity of the presented leakage model to
propose a novel attack strategy to recover some secret bits by manipulating the activity
function underlying the modeled power consumption. By doing so, we take advantage of
the cryptanalysis of the S-box.

3.2 Pearson Correlation Coefficient and Signal Reference Values
In a standard CPA attack, the adversary first feeds an oracle (i.e., our activity function)
with some knowledge (µ) and hypotheses about the secret. The oracle then estimates of
the power consumption [BCO04], as explained earlier, and creates a set of power traces P
containing power traces Pj . Following this, the adversary computes the Pearson correlation
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coefficient between the a set of power traces P and the oracle output for each hypothesis.
The more power traces the adversary has, the higher their chances are to recover the
secret solution, thanks to the Gaussian additive noise model and Proposition 1. More
precisely, the average power trace of a set P has a mean S and a variance that decreases
proportionally with the number of measurements. As a result, the amount of power traces
collected by the adversary is positively correlated with the probability of determining
whether a bit has flipped for fixed (K ′, κ, µ).

Proposition 1 (Average of Gaussian random variables, see [LL02, Section 2.4]). The
average of N independent Gaussian random variables with mean S and variance σ2 is also
a Gaussian random variable with mean S and variance σ2 ·N−1.

The knowledge of the oracle, or activity function, is stored in tuples of signal reference
values Sref, which are determined solely by the activity of (K ′, κ, µ). More specifically,
the signal reference values result from the computation of the signal power consumption
(Definition 5) for all possible values of (K ′, κ, µ) given the m targeted register bits and the
length n of the S-box. They are first sorted in tuples depending on the value K ′. Then,
each tuple contains sub-tuples indexed by the corresponding value of κ, which themselves
list signal reference values indexed by the corresponding value of the message µ. Suppose
the adversary targets all the m bits of the register (m = n). In that case, there are 3 · 2n
evaluations of the signal power consumption from Definition 5 for all the possible values of
K ′, κ, and µ. Otherwise, if the adversary targets one bit of the register (m = 1), then
the signal power consumption is evaluated for the two possible values of K ′ and 23 values
of κ and µ due to the algebraic expression of the activity function (Definition 4), which
depends on one bit of K ′, and three bits of κ and µ.

Definition 8 (Signal reference values Sref). The signal power consumption values are
stored in tuples of tuples Sref(K ′), one for each of the 2m possibilities of K ′, which contains
tuples SrefK′ (κ), one for each value of κ , which consists of all signal power consumption
evaluations for the message µ with fixed (K ′, κ). More formally, we have:

Sref
def= (Sref(K ′) |K ′ ∈ Fm2 ) ,

which, for a fixed value K ′, consists of:

Sref(K ′) = (SrefK′ (κ) | κ ∈ FmK′
2 ) , with

{
mK′ = n if m = n ;
mK′ = 3 if m = 1.

Then, for a fixed secret value (K ′, κ), we have:

SrefK′ (κ) = (S(K ′, κ, µ) | µ ∈ FmK′
2 ) ,

where S(K ′, κ, µ) is the signal power consumption.

The adversary then computes the Pearson correlation coefficient between those reference
values SrefK′ (κ) and the power consumption to find the most likely secret value of K ′ and
κ, as presented in the following Definition.

Definition 9 (Pearson correlation coefficient). The Pearson correlation coefficient ρ of
two random variables P and SrefK′ (κ) is

ρP,Sref
K′ (κ) =

E[PSrefK′ (κ)]− E[P ] E[SrefK′ (κ)]
σP σSref

K′ (κ)
,

with E the expectation and σ the standard deviation [LL02, Section 2.3].
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Pearson correlation coefficients range between −1 and +1, where +1 (resp. −1) indicates
that the two random variables are perfectly positively (resp. negatively) linearly correlated.
In our case, it means that the power consumption is positively or negatively correlated
with a secret value (K ′, κ). The adversary deduces which secret value is the most likely
solution for the measured power traces by selecting the highest absolute correlation value.

The adversary’s chance of finding a solution secret depends on the amount of gathered
power traces. We further explore this fact to compute probabilities of success based on
the number of collected traces for each of our attacks.

4 Attack Strategies
We detail two CPA attack strategies to target one sequence χn at a time. The first strategy
is CPA [BCO04], which simultaneously targets n bits of the register. To the best of our
knowledge, we are the first to provide the details of this attack on a quadratic map (χ3 and
χ5 in this paper). In comparison, the second strategy combines n single-bit CPA attacks.
We call it combined CPA or Snake attack. Both the presented strategies are device-agnostic
and are finely tuned for quadratic maps.

4.1 Correlation Power Analysis
In our first strategy, the attacker exploits the joint power consumption of the n bits of the
sequence χn at a time. They can thus have correlation results for 22n secret hypotheses
at once. For example, for n = 3, the attacker can directly recover the six secret bits
(K ′0,K ′1,K ′2, κ0, κ1, κ2). In order to exploit the leakage of the n register cells, the adversary
employs the well-known CPA (see Section 3.2). We describe how to adapt it to our leakage
model to compare it with combined CPA.

The adversary represents the signal power consumption values with 2n tuples Sref (K ′),
each containing 2n tuples SrefK′ (κ), consisting of 2n values for the possible values of µ
(Definition 8). That is because the adversary computes signal power consumption reference
values for m = n (Definition 5). To be more comprehensive, we write below the signal
reference tuples Sref (K ′) for three bits. The explicit values of the binary sequences are
written in monospace font, e.g., 000. We denote by Sref (K ′ = x) the tuple of signal
reference values for a fixed K ′, whose value equals the sequence x. In a similar fashion,
we write the sub-tuple of signal reference values for a fixed K ′ equal to x and κ to y by
Srefx(κ = y):

Sref(K ′ = 000) = (Sref000(κ = 000), Sref000(κ = 001), · · · , Sref000(κ = 111)) ,
Sref(K ′ = 001) = (Sref001(κ = 000), Sref001(κ = 001), · · · , Sref001(κ = 111)) ,
· · ·
Sref(K ′ = 111) = (Sref111(κ = 000), Sref111(κ = 001), · · · , Sref111(κ = 111)) .

The tuples of signal references values for χ5 can be trivially extended from the above
tuples. An explicit example of a tuple of signal power references for a secret K ′ being 100
and n = 3 is provided in Table 1. In the table, each bit of µ is written as µ0µ1µ2, and
the same goes for κ. The tuple Sref(K ′ = 100) is represented in a matrix form, where the
columns are the said tuples Sref100(κ) and the lines indicates the corresponding values of µ.

According to Definition 5, if all the n targeted bits of the register stage flip between
time t0 and t1, the corresponding signal power consumption equals −n. If only one bit
flips, it equals +1 for n = 3; if not, it equals −1. The signal power consumption is +n
only if the n bits have not flipped. Hence, the sign of the Pearson correlation coefficient is
regarded to determine whether the bits have switched. The adversary thus has enough
information to recover the 2n secret bits at once, given sufficient power traces. Ultimately,
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Table 1: Signal power consumption of reference Sref(K ′ = 100) with 23 tuples for κ
described by 23 elements representing the µ, for the CPA strategy.

µ0µ1µ2
κ0κ1κ2

000 001 010 011 100 101 110 111

000 +1 +1 −3 −1 +1 −1 +3 −1
001 +1 +1 −1 −3 −1 +1 −1 +3
010 −3 −1 +1 +1 +3 −1 +1 −1
011 −1 −3 +1 +1 −1 +3 −1 +1
100 +1 −1 +3 −1 +1 +1 −3 −1
101 −1 +1 −1 +3 +1 +1 −1 −3
110 +3 −1 +1 −1 −3 −1 +1 +1
111 −1 +3 −1 +1 −1 −3 +1 +1

the attacker aims to recover the secret K ′ only, but they need the additional information
provided by the bits of κ as an intermediate step to reach that goal.

Degenerated cases. For n = 3, six out of eight tuples SrefK′ (κ) are linearly uncorre-
lated for a fixed K ′. The latter makes it possible to distinguish the eight hypotheses for
κ with the Pearson correlation coefficient for a given K ′. The only exceptions are when
K ′ = 000 and K ′ = 111. For those values, only four reference tuples SrefK′ (κ) are linearly
uncorrelated out of the eight ones. It means that the best adversarial guess is an equally
likely secret hypothesis and its bit inverse. We call those cases degenerated. Compared to
Table 1, the tuple of signal power reference values for a degenerated case has the highest ab-
solute values positioned on the diagonal lines. For example, let (K ′ = 000, κ = 010) be the
values to guess. In the best case, the adversary obtains the solutions (K ′ = 000, κ = 010)
and (K ′ = 111, κ = 101) as equally likely. When n = 5, the degenerated cases do not
appear. Indeed, the tuples SrefK′ (κ) contain more elements (25) because there are more
possible values µ since n = 5. That makes it possible to distinguish all the different secret
possibilities.

4.2 The Snake Attack: Combined Correlation Power Analysis
In the second strategy, the adversary combines single-bit CPA attacks to retrieve n bits
of κ and then the corresponding n bits of K ′. The leakage of each bit xi is exploited
with the Pearson correlation coefficients (Section 3.2). We want to reduce the number of
intermediate steps for this attack to recover the 22n possible secret bits compared to the
previous CPA strategy.

Our oracle is the activity function (Definition 4), which is evaluated for (K ′i, κ, µ), i.e.,
one bit of the targeted sequence χn. Thus, m = 1 for this strategy. To reduce the number
of intermediate steps, we take a closer look at the expression of the activity function: we
see that κi simply adds to K ′i. That means that the sum εi = κi ⊕K ′i affects the sign
of the signal power consumption values. The signal reference values where εi = 0 have
the opposite sign of the ones where εi = 1. Hence, the Pearson correlation coefficient
ρSref

K′
i

(κ),P has the same absolute value regardless of εi, considering that all the other
parameters stay unchanged. As a result, the adversary can not determine the individual
bits of the sum εi with only the signed value of the Pearson correlation coefficient. However,
the adversary obtains information about the most likely hypothesis on (κi+1, κi+2). They
then combine those bits of knowledge when targeting the following i-th bit of the sequence
χn. The adversary thus successfully exploits the redundant information underlying the
Pearson correlation coefficients about the secret bits in a divide-and-conquer manner.

As an example, for n = 3, acquiring the correlation coefficient values for the first,
second, and third bits makes it possible to retrieve respectively (κ1, κ2), (κ2, κ0) and
(κ0, κ1), as highlighted in Figure 3a. Furthermore, Figure 3b presents the retrieved bits of
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i = 0:

i = 1:

i = 2:

K ′0 ⊕ κ0 κ1 κ2

κ0 K ′1 ⊕ κ1 κ2

κ0 κ1 K ′2 ⊕ κ2

(a) n = 3

i = 0:

i = 1:

i = 2:

i = 3:

i = 4:

K ′0 ⊕ κ0 κ1 κ2 κ3 κ4

κ0 K ′1 ⊕ κ1 κ2 κ3 κ4

κ0 κ1 K ′2 ⊕ κ2 κ3 κ4

κ0 κ1 κ2 K ′3 ⊕ κ3 κ4

κ0 κ1 κ2 κ3 K ′4 ⊕ κ4

(b) n = 5

Figure 3: The information about the secret bits retrieved without ambiguity from the
different Pearson correlation coefficients, is highlighted according to the targeted i-th bit
of the sequence χn in different dotted lines.

κ for a sequence χ5. The adversary thus exploits the redundant information provided by
the quadratic terms of the activity function to determine the most likely κ. We henceforth
denote by ∗κi+1κi+2 (i ∈ Z/nZ) the fact that the sign of K ′i ⊕ κi is discarded.

As a result, we refine the signal reference values from Definition 8 to compute the
Pearson correlation coefficient. To that end, the adversary generates n reduced tuples of
signal power consumption references S′ref for each bit to combine the correlation results.
To not take into account the sign effect, the adversary fixes the value of K ′i ⊕ κi to either
0 or 1 while generating the reduced signal reference values. We define below in a formal
manner the reduced signal reference values S′ref for our optimized combined CPA.

Definition 10 (Reduced signal reference values S′ref). The reduced signal power con-
sumption values are stored in n tuples of tuples S′ref(K ′i), one for each targeted bit xi
of the output of S-box, which contains 22 tuples S′refi

(∗κi+1κi+2), one for each value of
(κi+1, κi+2), which consists of 23 signal power consumption evaluations for the meaningful
values of the message µ. More formally, we have:

S′ref
def= (S′ref(K ′i) | i ∈ Z/nZ) ,

which, for a bit i, consists of:

S′ref(K ′i) = (S′refi
(∗κi+1κi+2) | (κi+1, κi+2) ∈ F2

2) ,

Then, for a fixed secret value (κi+1, κi+2), we have:

S′refi
(∗κi+1κi+2) = (S(K ′i, κ, µ) | µ ∈ F3

2 and K ′i ⊕ κi = 0 or K ′i ⊕ κi = 1) ,

where S(K ′i, κ, µ) is the signal power consumption for m = 1.

Like the signal reference values Sref from Definition 8 with m = 1, the adversary
generates 23 values in the tuple S′refi

. That is because the algebraic expression of the
activity function (Definition 4) depends on three bits of µ for a bit i.

For an explicit example, Table 2 provides the tuple Sref(K ′0) for the first bit of the
register (m = 1) with n = 3, as specified in Definition 8 for the standard CPA strategy.
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We now replace it by Table 3 by discarding the tuples where K0 ⊕ κ0 = 1 to eliminate
the sign effect of εi following our combined CPA strategy. We have thus reduced signal
reference values.

Table 2: Signal power consumption of reference Sref(K ′0, κ). The sum κ0⊕K ′0 is considered
instead of κ0.

µ0µ1µ2
K ′0 ⊕ κ0 κ1κ2

000 001 010 011 100 101 110 111

000 +1 −1 +1 +1 −1 +1 −1 −1
001 −1 +1 +1 +1 +1 −1 −1 −1
010 +1 +1 +1 −1 −1 −1 −1 +1
011 +1 +1 −1 +1 −1 −1 +1 −1
100 −1 +1 −1 −1 +1 −1 +1 +1
101 +1 −1 −1 −1 −1 +1 +1 +1
110 −1 −1 −1 +1 +1 +1 +1 −1
111 −1 −1 +1 −1 +1 +1 −1 +1

Table 3: Reduced signal power consumption of reference S′ref(K ′0). In practice and in
this example, the adversary chooses to retain the tuples where K ′ ⊕ κ0 = 0 from Table 2
according to Definition 10.

µ0µ1µ2
K ′0 ⊕ κ0 κ1κ2

*00 *01 *10 *11

000 +1 −1 +1 +1
001 −1 +1 +1 +1
010 +1 +1 +1 −1
011 +1 +1 −1 +1
100 −1 +1 −1 −1
101 +1 −1 −1 −1
110 −1 −1 −1 +1
111 −1 −1 +1 −1

In addition, we provide the reduced tuples of signal reference values for n = 3 and
n = 5. For specific values of κi+1 and κi+2, we write the binary sequence in monospace
font with the correct amount of * to discard the unknown bits of κ (e.g., **01* for n = 5,
i = 1, κ2 = 0 and κ3 = 1). We start with the reduced tuple S′ref for a three-bit S-box:

S′ref(K ′0) = (S′ref0
(*00), S′ref0

(*01), S′ref0
(*10), S′ref0

(*11)) ,
S′ref(K ′1) = (S′ref1

(0*0), S′ref1
(0*1), S′ref1

(1*0), S′ref1
(1*1)) ,

S′ref(K ′2) = (S′ref2
(00*), S′ref2

(01*), S′ref2
(10*), S′ref2

(11*)) .

We can easily extend it for a five-bit S-box:

S′ref(K ′0) = (S′ref0
(*00**), S′ref0

(*01**), S′ref0
(*10**), S′ref0

(*11**)) ,
S′ref(K ′1) = (S′ref1

(**00*), S′ref1
(**01*), S′ref1

(**10*), S′ref1
(**11*)) ,

S′ref(K ′2) = (S′ref2
(***00), S′ref2

(***01), S′ref2
(***10), S′ref2

(***11)) ,
S′ref(K ′3) = (S′ref3

(0***0), S′ref3
(0***1), S′ref3

(1***0), S′ref3
(1***1)) ,

S′ref(K ′4) = (S′ref4
(00***), S′ref4

(01***), S′ref4
(10***), S′ref4

(11***)) .
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i = 0:

i = 1:

i = 2:

*00 *01 *10 *11

0*0 0*1 1*0 1*1

00* 01* 10* 11*

κ = 000 κ = 101

(a) n = 3

i = 0:

i = 1:

i = 2:

i = 3:

i = 4:

*00** *01** *10** *11**

**00* **01* **10* **11*

***00 ***01 ***10 ***11

0***0 0***1 1***0 1***1

00*** 01*** 10*** 11***

κ = 00000 κ = 10101

(b) n = 5

Figure 4: Combination of correlation coefficients to obtain κ values, namely the ‘Snake
walk’. Each label (e.g., 0***0) represents an absolute or a squared Pearson correlation
result. The values indicated in the labels are the binary sequences κ with the known bits
(0 or 1) for κi+1 and κi+2, and the unknown ones (*).

As a convenient result, with the reduced reference values that discard K ′i ⊕ κi, the
attacker obtains signal reference tuples Srefi

(∗κi+1κi+2) for each K ′i that have a correlation
coefficient equal to zero with each other. In other words, there is only one best adversarial
hypothesis on κi+1 and κi+2 in this strategy. Furthermore, which half of the tuples
Srefi

(∗κi+1κi+2) the adversary uses is irrelevant to retrieve the bit value of κ.
The adversary then computes the n Pearson correlation coefficients ρS′

refi
(∗κi+1κi+2),P ,

which we henceforth write ρ∗κi+1κi+2 for readability purposes. They obtain positive and
negative values to guess the secret. That is because they arbitrarily choose which four
reference values to discard for each tuple due to the sign effect of εi. To eliminate the
latter, the adversary squares the correlation coefficients or takes their absolute values.

The adversary then combines the absolute or squared correlation coefficients to de-
termine the most likely hypothesis for the n bits of κ. However, selecting the highest
result for each bit may provide an inconsistent value of κ due to some overlapping of the
retrieved bits. To tackle this problem, the adversary chooses one correlation coefficient per
bit and adds them to have coherent 2n values of κ. For example, κ = 011 is obtained by
adding the correlation results corresponding to κ = *11, κ = 0*1, and κ = 01*. There
is no other combination. Figure 4a depicts how to obtain two possibilities for κ, namely
κ = 000 and κ = 101. For our five-bit S-box, Figure 4b presents the combination of the
correlation coefficients for κ = 00000 and κ = 10101. The labels in the figures symbolize
the Pearson correlation coefficients ρ∗κi+1κi+2 for a particular value of (κi+1, κi+2) with
the remaining unknown bits of κ, whose numbers depend on the length n of the considered
S-box. Visually, linking the correlation results looks like performing a ‘Snake walk’. Hence,
the nickname of the combined CPA strategy: the Snake attack.

We provide in the following a definition of the Snake walk, or the combination of
the Pearson correlation coefficients, to recover the bit information κ while individually
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targeting the n bits of the register state. We have n reduced tuples of signal reference
values S′ref(K ′i), which contains each four reduced sub-tuples S′refi

(∗κi+1κi+2), one for each
evaluation of (κi+1, κi+2) from Definition 10.

Definition 11 (Snake walk). The Snake walk represents the addition of the n squared or
absolute Pearson correlation coefficients ρ∗κi+1κi+2 , such that the individual bits of κ are
equal. In other words, for all bits of κ indexed by i ∈ Z/nZ, the value of κi+2 in the index
of the Pearson correlation coefficient ρ∗κi+1κi+2 , which targets the i-th bit of the output of
the S-box, is equal to the value of κi+2 in ρ∗κi+2κi+3 , which targets the (i+ 1)-th bit of
the said output.

Recovering K or K ′. Once a value κ is labeled as the most probable solution,the
adversary can either recover K that is encoded in the entire initial register state or K ′ from
Definition 3. To find the value K, the adversary targets all the output bits of the S-boxes
stored in the register state after one round to recover all the corresponding variables κ.
It results in 4n correlation values to manipulate times the number of parallel S-boxes
for a round function. Afterward, they can determine K by applying the inverse of the
linear layer λ−1 on the concatenation of the multiple variables κ, as done in our practical
evaluations. Concretely, for one S-box, this reduces the number of correlations that need
to be computed for n = 3 from 64 to 12 and for n = 5 from 1,024 to 20, resulting in a
vastly more efficient attack.

Alternatively, the attacker infers the n bits of K ′ by retrieving the sign of the correlation
values for the i-th studied bits. Indeed, the adversary can recover the initial secret by
computing εi ⊕ κi = K ′i for each bit xi. That is because, from the expression of the signal
power consumption, if the sign of the correlation coefficient is negative, the sum εi equals
1. Contrarily, if the sign is positive, εi equals 0. As a result, the adversary performs
at most n22 + n intermediate steps by exploiting the sign of the correlation values to
recover 22n bits of information (K ′, κ) when targeting one S-box by taking advantage of
the algebraic expression of the activity function (Definition 4). The latter heavily relies on
the expression of the quadratic map of the permutation.

5 Practical Evaluation
We provide a method to determine the rank of the secret to guess. We then describe how
to compute the probabilities of success for the secret bits to retrieve to be ranked at a
given position. Finally, we present our hardware setup to evaluate our attack strategies.

5.1 Rank of a Secret Hypothesis
We not only intend to quantify the gain in terms of attack success probability between
one attack strategy and another for a three-bit and a five-bit quadratic S-box but also to
compare those probabilities for the rank of the secret solution. There are as many ranks
as the number of correlations that need to be computed: it equals the number of tuples
Sref(K ′) times their number of sub-tuples SrefK′ (κ) for the CPA strategy, or 4n for the
Snake attack strategy. The secret hypotheses are ranked by their scores, which are (signed)
correlation coefficients for CPA and absolute or squared coefficients for Snake.

Definition 12 (Rank of a secret hypothesis). A secret hypothesis is ranked first (resp.
second, etc.) if its corresponding score is the highest (resp. second highest, etc.) positive
value compared to the other secret hypotheses.

The above definition is more restrictive than the order of the success rate [SMY09].
Indeed, we compute the probability to be ranked r-th, whereas the order of success rate
considers whether the solution is ranked among the r-th first hypotheses.
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5.2 Attack Success Probabilities for the Ranks
We aim to plot the probabilities to have the solution secret be ranked first, second, etc.,
for an adversary depending on their amount of power traces, also known as signal-to-noise
ratio (SNR). A low SNR means manipulating a few power traces, hence much noise in the
measurements. A high SNR highlights the signal part because the adversary gathered a
sufficient number of power traces (Proposition 1).

We then compare the two attack strategies (Snake attack and CPA) w.r.t. the probability
that an adversary can recover the solution value of the secret bits. After that, we infer
which strategy performs better in terms of the required number of power traces and
intermediate steps.

5.3 Hardware Setup
For our practical evaluation, we target round-based implementations of Xoodoo (n = 3)
and Keccak-p (n = 5) for a width b = 1600, on a Spartan 6 FPGA running at 4 MHz. We
measure the current via the voltage drop over a shunt in the supply path. Then, to acquire
suitable power traces, we used a ZFL-2000GH+ Low Noise Amplifier (LNA) configured
with a 22 dB gain and a Spectrum M4 oscilloscope (8−bit resolution) with a sample rate
of 2.5 GS/s.

For Xoodoo, we randomize the whole input state, adding a random key that is fixed
for all measurements, before performing the first round. It should be noted that to attack
Xoodoo, we also have to account for the addition of the round constant with the mapping
ι and the ρeast linear mapping ρeast that are performed after χ3.

In contrast to this, for Keccak, we cannot randomize the whole 1600-bit input state
since the target FPGA does not have enough input pins. We tackle this by randomizing
only 128 bits and measuring 13 rounds. Following this, we target the transition from round
12 to 13. The reason for this is that after 12 rounds, we are sure that the whole state is
randomized and view the state at this point as being a randomized message M added to a
fixed key K. Thus, we choose the random key K after the measurement and compute the
fictional M from the randomized state. Then we attack as known and we also compute
µ = λ(M) and account for the addition of the round constant with the step ι.

We have implemented both the standard CPA attack and the Snake attack in C, making
use of multi-threading. Furthermore, we will make our implementations publicly available
upon acceptance of the paper.

6 Attack Success Probabilities Results
First, we present our practical results for Keccak-p and Xoodoo with the two attack
strategies. Secondly, we argue about the probability distribution obtained with the Henery
model.

6.1 Practical Results
We present discrete attack success probabilities computed from measurements from the
hardware testbed in Figures 5a and 5b for Xoodoo and Figures 6b and 6a for Keccak-p.
The probability of being ranked first is depicted in black. The gray curves represent the
probability of being ranked second, third, etc. For those curves, the higher the rank (rank
two being the highest), the slower they collapse. In other words, the higher the rank for
the gray curves, the higher their relative position is in the figures. In addition, the success
probability to be ranked first equals one for a high SNR (i.e., a high amount of power
traces), whereas the other ranks have a zero probability. Note that to make the gray
curves more visible, we limit the x-axis to 25,000 traces for Xoodoo and 400,000 traces for
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(b) Combined CPA (Snake attack) recovering κ.
The correlation coefficient are squared to discard
their sign.

Figure 5: Ranked success probabilities targeting one sequence χ3.
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(b) Combined CPA (Snake attack) recovering
κ. The correlation coefficients are squared to
discard their sign.

Figure 6: Ranked success probabilities targeting one sequence χ5.

Keccak-p, respectively, even though the first rank (black curve) has not yet reached the
probability of being one at this point.

For Xoodoo, the results were generated for sets of power traces that contain 75,000 traces
each. The attacks were performed 16,896 times each for CPA and combined CPA/Snake
attack. The initial success probabilities (i.e., full noise or low SNR) are close to be equally
distributed for each strategy: ideally, they are equal to 1/22n for CPA and 1/2n for the
Snake attack. However, in practice, the first probability already includes a low number of
processed traces, which leads to a slight deviation from the ideal value.

Due to the much larger state of Keccak-p compared to Xoodoo, there is a lot more noise
when targeting the nonlinear layer of Keccak-p. It is reflected in Figures 6b and 6a by the
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Figure 7: Comparison between CPA (dotted line) and Snake attack (solid line) for the
probability of the correct hypothesis to not be rank one.

increased number of traces needed to recover the correct secret. Indeed, we have 1.5 million
traces per set. To match the Xoodoo experiment, we conducted 16,896 experiments.

As a result, the Snake attack on Xoodoo recovers the correct κ after 43,860 power traces
for all experiments. The standard CPA attack takes 61,380 traces until all experiments
label the solution (K ′, κ) as the first rank. We also recall that for each Snake attack
experiment, only 12 correlations must be computed, compared to 64 for standard CPA.

For Keccak, there are even higher differences concerning the number of power traces.
Indeed, the Snake attack consistently finds the value of the solution κ after 771,600 traces
for all experiments. In contrast, the standard CPA attack requires 1,223,400 traces. Com-
putationally, the Keccak Snake attack requires computing 20 correlations: it outperforms
the standard CPA attack, which operates on 1,024 correlations.

Figures 7a and 7b directly compare the probabilities that the solution hypothesis is
not ranked first. We can see that the Snake attack constantly has a lower probability
than the standard CPA approach, demonstrating that the Snake attack outperforms the
standard CPA approach. In summary, the quadratic function χn is attacked with fewer
efforts thanks to taking advantage of its algebraic expression with combined CPA, or Snake
attack, compared to the standard CPA.

6.2 Probability Distribution: Henery Model
If we consider our approach from a probabilistic modeling perspective, we are comparing
and ranking 22n, or 2n, possible outcomes in the form of Pearson correlation coefficients
between observed and reference power consumption values. The probability of success for
each outcome (i.e., secret hypothesis) is given by how close it is to the original solution.
We note that the probabilities of success in Figures 6a and 5a add up to one for a given
number of traces. They are dependent of each other and follow a particular order (the
higher the probability of success, the higher the rank). It is akin to ranking the outcomes
in a horse race according to the horses’ probabilities of winning. This type of problem was
studied and formalized by Henery in 1981 [Hen81].

In the latter, the author defines a probability model over each outcome permutation
(i.e., ranking in this work) given a particular distribution family for the outcome variables.
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Our ranked success probabilities follow a Henery model, but it is unfortunately (generally)
impossible to derive an analytically tractable expression for them, given an arbitrarily
distributed outcome. Thus, we rely instead on real-world measurements.

7 Discussion
In this section, we refer to existing attacks in the literature that employ similar side-channel
methods to the ones presented in this paper. We discuss the similarities and differences
with our work in this paper.

Samwel and Daemen [SD17] extended the work of Bertoni et al. [BDD+12] by targeting
the full sequence χ5 as implemented in Lake Keyak, with DPA on a FPGA instead of
targeting only one bit of the said S-box. It is similar to our standard CPA attack scenario
from Section 4.1. They concluded that attacking a full binary sequence is less efficient than
attacking a single bit of the non-linear layer. We continue this work by providing more
detailed insight into the attack on the full sequence χ5 with CPA and by formalizing the
attack in order to generalize it to any χn. Indeed, we provide the probabilities of success
according to the ranks and detail the tuples of signal reference values. We also study the
case for χ3 and exhibit the potential degenerated cases that an adversary might encounter.
We improve on the single-bit attack with Snake, or combined CPA, by effectively reducing
the number of intermediate results to compute.

Furthermore, Messerges et al. presented the multi-bit DPA approach [MDS02] where,
instead of considering the leakage of one bit with the selection function, the attacker
considers d bits. From there, three partitions are created depending on the values of
the output of the selection function for d bits: one where the output of the selection
function is 0s, a second one for all 1s, and a third one for mixed values. The meaning of
partitions in this work corresponds to the signal reference values in our case. However, our
partitions—tuples of signal reference values—reflect the precise number of bit flips.

The latter work inspired the authors from [LCC+06], which proposed the Partitioning
Power Analysis (PPA) as a more general method to exploit the power consumption signals
of d bits instead of only one. Their presented attack is similar to CPA but without
normalizing the correlation coefficient by the standard deviation of the power consumption
values. They classify power traces into (d+ 1) classes according to the Hamming distance
of the considered d bits between a previous and current state. This approach is included in
our work for the classic CPA approach, where the signal reference values can have values
ranging from −n to +n depending on the Hamming distance of the state before and after
one round. We further extend their work by combining the Pearson correlation coefficients
to have coherent secret values, as in the Snake attack.

Other works in power analysis have similar notions to our tuple of signal reference
values. Another example is the power analysis attack presented by Standaert et al. for an
FPGA implementation of AES [SÖP04]. They used a selected prediction matrix similar to
our tuples of signal reference values. Nevertheless, they do not link the reference values
among themselves to reduce the complexity of their side-channel attack unlike our work.

On the other hand, combining leakage signals is used for higher-order masking
schemes [CPR07], where masking refers to splitting a secret variable into several shares. A
power analysis attack is applied to the individual shares of the secret. It uses a combining
function (e.g., a product, a difference of absolute values) on them to find a high correlation
with the original un-shared value. However, the term combination is used differently
than in our paper for combined CPA, for which we exploit the information redundancy to
reduce the number of intermediate steps to compute.

Some attacks were proposed to reduce the complexity of the power analysis, like the
Butterfly-Attack [ZKS12] presented by Zohner et al. for the modular addition. It comes
in handy to reduce the complexity of a DPA attack on this operand by lowering the
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number of hypothesis computations in a divide-and-conquer manner and then exploiting
the information on the symmetric counterpart of the solution key. They exploit the latter
because, by splitting the modular addition results into blocks, the divide-and-conquer
results no longer highlight the solution key with the highest correlation value. Nonetheless,
it is applied to a different kind of cipher (that uses modular addition) and in a different
context than the permutations for symmetric cryptography targeted in this paper.

Applicability to Ascon. The NIST Lightweight Cryptography competition winner,
Ascon, has an S-box that is affine equivalent to χ5 [DEMS21]. It operates on each bit-slice
of five registers that contain 64 bit-word and are denoted by xi,0≤i≤4. For the first round
of the first permutation, the register x0 is initialized by a constant C (or Initialization
Vector), x1 by a first key word K1, x2 by a second key word K2, x3 by a first nonce word
N1 and x4 by a second nonce word N2. For the same bit position for the 64 bit-word,
we can write the Algebraic Normal Form (ANF) of the S-box after its first execution
(operations carried in F2):

x0 = C ⊕N1 ⊕K2 ⊕K1(C ⊕N2 ⊕K2 ⊕ 1) ,
x1 = C ⊕N1 ⊕N2 ⊕K1(N1 ⊕K2 ⊕ 1)⊕K2(N1 ⊕ 1) ,
x2 = N2 ⊕N1N2 ⊕K1 ⊕K2 ⊕ 1 ,
x3 = C ⊕N1 ⊕N2 ⊕ C(N1 ⊕N2)⊕K1 ⊕K2 ,

x4 = N1 ⊕N2 ⊕K1(C ⊕N2 ⊕ 1) .

The Snake attack exploits the redundancy of quadratic terms, where some key bits appear.
It also assumes that there are as many key bits as the size of the S-box. We observe,
based on the above equations, that the first call of the Ascon S-box does not fulfill those
requirements: there are only two key bits for a five-bit S-box and only the registers x0
and x1 contain quadratic terms with two key bits. In that case, the Snake attack does not
provide any advantage, and we refer to Samwel and Daemen [SD17] for a detailed DPA
attack on the Ascon S-box with the same leakage model as ours.

8 Future Work
In this paper, we presented in details CPA attacks on χ3 (Xoodoo) and χ5 (Keccak-p) to
understand in depth how to optimize standard correlation power analysis. They can be
extended to larger quadratic S-boxes employed in other ciphers, for which the difference in
the number of intermediate results will be even more drastic between the Snake attack
and the standard CPA. For example, one could target Subterranean 2.0 [DMMR20] NIST
Lightweight Cryptography competition candidate that uses as an S-box the function χ257,
or Rasta [DEG+18] and Dasta [HL20] that use χn with n being the block length and an
odd number. Furthermore, to apply our Snake attack to different quadratic functions
(other than χ), one would need to change the activity function accordingly, then compute
the corresponding signal reference vectors and sum the correlation results according to our
Snake walk.

Additionally, our Snake attack heuristically combines multiple one-bit CPA attacks,
which opens the door for an approach that relies on DPA instead since only two classes are
to be distinguished. An ad-hoc porting of the Snake attack could include the computation of
Welch’s t-test in place of CPA, and then the t-test results would be heuristically combined
with the ‘Snake walk’ to obtain the secret κ. We performed preliminary experiments on the
same trace sets of Xoodoo used for the results shown in Figure 5b. However, we observed
that the sum of squared t values results in a weaker attack that requires more traces than
the standard CPA approach. Thus, a method to rely on DPA remains for future work.
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Moreover, it would be interesting to assess whether our method can be applied to
other types of leakage, e.g., electromagnetic information with Differential Electromagnetic
Analysis (DEMA) introduced by Quisquater and Samyde [QS01].

To extend the scope of this study, one could try to recover the initial secret after several
rounds or a masked implementation with the help of the presented model and theory.
As the Snake attack exploits the information redundancy of quadratic terms to find the
secret values, it seems a natural fit for masked hardware implementations of cryptographic
algorithms (like Threshold Implementations [NRR06]), which are designed to split the
secret bits into several variables each.

9 Conclusion
We considered the difference in power consumption of register cells before and after one
round of a hypothetical implementation of a permutation-based algorithm for quadratic
maps, which are used as S-boxes. This work details the case for χn with n ∈ {3, 5}. We
model the flipping activity of the register state with simple assumptions, which takes
advantage of the cryptanalysis of quadratic maps. We correlate the measured consumed
power for the targeted bits with reference values by the mean of the Pearson correlation
coefficient. Afterward, we study the success probabilities of CPA and combined CPA, or
Snake attack, to retrieve up to 2n secret bits. To the best of our knowledge, we are the
first to describe both the standard CPA attack and the novel combined CPA for quadratic
maps.

We demonstrate that an adversary performs better with our novel combined CPA
strategy (Snake attack) than the standard CPA approach for small S-boxes. In order
words, the attack uses n22 + n intermediate steps for the combined attack, instead of
22n for the classic one, to determine 22n secret bits. Not only we successfully reduce the
computational complexity of the standard CPA attack with the Snake attack, but we also
require fewer power traces to find the secret solution. In addition, for the CPA strategy
for Xoodoo, the adversary can recover all secret bits but encounters two degenerated cases
that give two equally likely secret hypotheses. We also propose a probability distribution
model for ranked attack success probabilities. Our study highlights that a tailored CPA
strategy that uses the cryptanalysis of a quadratic map performs better than traditional
CPA.
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