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MQsoft1: Multivariate Quadratic Software

Motivations

11/2017 and 01/2019: beginning of the 1st and 2nd rounds of
the NIST post-quantum cryptography standardization process.
Signature: 4 second round candidates over 9 are multivariate.
Libraries: code [McBits, CHES’2013, ...], lattice [NFLlib, CT
RSA’16, ...], but no library for the multivariate-based schemes!

Our contribution: MQsoft
An efficient C library exploiting SSE and AVX2 instructions set.
Matsumoto-Imai-based schemes: QUARTZ, Gui, GeMSS.
Fast arithmetic in F2[X ],F2n and F2n [X ] (with root finding),
multivariate quadratic systems in F2 (evaluation, change of
variables, ...), constant-time implementation against timing
attacks (as often as possible).

1https://www-polsys.lip6.fr/Links/NIST/MQsoft.html
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Matsumoto-Imai-based schemes

Matsumoto-Imai [EUROCRYPT ’88]

Public-key: a multivariate quadratic system.

Example in F2: p(x1, x2, x3) =
{

x1x2 + x2x3 + x1 + 1
x1x2 + x1x3 + x1

Verifying process: evaluation of the public-key.
Signing process: affine transformations + inversion of the
private map.

HFE-based signature schemes [Patarin, EUROCRYPT ’96]

Signing process: to find the roots of a univariate polynomial.
Schemes: QUARTZ (2001), Gui (2015), GeMSS (2017),
DualModeMS (2017), BlueGeMSS (2019), RedGeMSS (2019).
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Performance

QUARTZ (a NESSIE submission)

In 2001: 4s to generate the keys, 10s to sign, 900µs to verify.
With MQsoft (new hardware + new library): 2.0ms to
generate the keys, 20ms to sign, 6.4µs to verify.

sign. scheme sec. level key gen. sign. verif.
GeMSS128 128 +220% +100% +95%
GeMSS192 192 +220% +57% +84%
GeMSS256 256 +240% +110% +75%
Gui-184 128 +1200% +100% +73%
Gui-312 192 +1600% +95% +56%
Gui-448 256 +2500% +85% +58%

Speed-up (best first round implementations compared to MQsoft),
Haswell processor. Speed-up of 100% for the signing process, and
between 60% and 100% for the verifying process.
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MQsoft: architecture for HFE

Compute the inner
secret key polynomial

Root finding in F2n [X ] Evaluation of a multi-
variate quadratic system

Frobenius map in F2n [X ] GCD in F2n [X ]

Multiplication in F2n Squaring in F2n Multi-squaring in F2n

Modular reduction in
F2[X ]

Squaring in F2[X ]Multiplication in F2[X ]

Keypair generation Signing process Verifying process
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Efficient arithmetic in F2n

Software and libraries for number theory
Magma, a computer algebra software.
NTL, A Library for Doing Number Theory (in C++).
FLINT, Fast Library for Number Theory, less efficient in F2n!
gf2x (C library), specialized for the multiplication in F2[X ].

Implementations for specific fields

Elliptic curves [BluGue13]: F2163 , F2233 , F2283 , . . .
Gui [mpkc-128bit, gui-pq-submission]: F2184 , F2240 , F2312 , . . .

MQsoft
Arithmetic in F2n for n ≤ 576, in C using AVX2 instructions set.
Especially efficient on Skylake processors (6th generation), but
also efficient on Haswell processors (4th generation).
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Constant-time product in F2n = F2[X ]/f (x)

Code using SSE (128 bits) or AVX2 (256 bits) instructions sets.

Multiplication
The most important operation!

1 School-book algorithm by
block of 64 bits (PCLMULQDQ).

2 Karatsuba algorithm, the base
case depends on the processor.

n Magma NTL MQsoft
252 558 169 36-40
511 761 320 91-92

Multiplication in F2n in cycles,
Skylake processor.

Squaring
Linear operation in char. 2:
(ax + b)2 = a2x2 + b2.

1 Table lookups of square
(PSHUFB, VPSHUFB).

2 Squaring of each 64-bit
block (PCLMULQDQ).

n Magma NTL MQsoft
252 455 128 15-24
511 510 174 24-27

Squaring in F2n in cycles,
Skylake processor.
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Representation of multivariate quadratic systems
(m equations, n variables)

Representation "equation by equation"
The equations are stored one by one.

Example in F2: p(x1, x2, x3) =
{

x1x2 + x2x3 + x1 + 1 (1)
x1x2 + x1x3 + x1 (2)

Representation "coefficient by coefficient"
The system is stored as an equation in the big field F2m .
Example in F2: let F4 = F2[X ]/(α2 + α + 1),
p(x1, x2, x3) = 1× (1) + α× (2)

= (α + 1)x1x2 + αx1x3 + x2x3 + (α + 1)x1 + 1
This representation is used in [Berbain, Billet, Gilbert, Efficient
Implementations of Multivariate Quadratic Systems] and
MQsoft.
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Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1

= 1

x2

= 0

x3

= 1

x4

= 0

x1

= 1

p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) =

p.cst + p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.
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MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.
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Root finding in F2n [X ]

Root finding algorithm of F ∈ F2n [X ] [von zur Gathen, Gerhard,
Modern Computer Algebra]

1 H = X 2n − X mod F .
2 G = GCD(F ,H). G is split and has a small number of roots.
3 Computation of all roots of G with an equal-degree

factorization algorithm.

Specificity of the HFE polynomial F

F = ∑
06j<i<n
2i+2j6D

Ai ,j X
2i+2j + ∑

06i<n
2i6D

Bi X
2i + C ∈ F2n [X ]

F is sparse (quadratic form, 1
2 log2(D)2 coefficients).
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Repeating squaring algorithm

Classical method to compute X 2n − X mod F .

function RepeatingSquaring(F ∈ F2n [X ])
Xi ← X . Xi is X 2i mod F
for i from 1 to n do

Xi ← X 2
i mod F

end for
return Xi + X

end function

Specificities

The odd degree terms of X 2
i are zero.

Modular reduction by a sparse polynomial: D
2 log2(D)2 field

multiplications.

11/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Repeating squaring algorithm

Classical method to compute X 2n − X mod F .

function RepeatingSquaring(F ∈ F2n [X ])
Xi ← X . Xi is X 2i mod F
for i from 1 to n do

Xi ← X 2
i mod F

end for
return Xi + X

end function

Specificities

The odd degree terms of X 2
i are zero.

Modular reduction by a sparse polynomial: D
2 log2(D)2 field

multiplications.

11/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Improvement of the repeating squaring algorithm

Let:
X 2
i = FQ + Xi+1 the Euclidean division of X 2

i by F ,
F = Flow +X d+1Fhigh, with fdX

d the largest odd degree term,
Q = Qlow + X d−1Qhigh.

We have:
1 The odd degree terms of Fhigh are null,
2 The odd degree terms of Qhigh are null,
3 If D is even, F̃ = F − fdX

d = F̃low +X d̃+1F̃high with d̃ = d+1
2

Theorem (simplified)

Let D be an even integer, and F be a D-degree HFE polynomial.
By removing s odd degree terms of F , the Euclidean division of Xi

by F can be accelerated by a factor < 2.
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Sparse HFE polynomials and security

s d Number of non-zero terms of Q Speed-up

D
Experimental
reg

0 129 129 0%

5

1 65 97 33%

5

2 33 81 59%

5

3 17 73 77%

5

4 9 69 87%

5

5 5 67 93%

5

6 3 66 95%

5

7 1 65 (only even degree terms) 98%

5

Speed-up of the Euclidean division of Xi by F for D = 130. We remove
{f129X 129, f65X

65, . . . , f2d−1X 2d−1} = s terms.

Complexity of the Gröbner Basis attack [FauJou03]

The complexity of the direct attack against the HFE-based schemes
is O(nωDreg), with Dreg the degree of regularity and 2 ≤ ω ≤ 3.
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Performance

n D s NTL Magma MQsoft
174 513 0 1090 -3.6% +840%

514 3 1100 +46% +1500%
354 513 0 4370 +16% +640%

514 3 4390 +88% +1200%

Number of mega cycles to find the roots of a HFE polynomial with NTL,
followed by the speed-ups obtained respectively with Magma and MQsoft
(Skylake processor).

Results
NTL is not adapted to the sparse polynomials.
Magma exploits the parameter s with a variable-time
implementation.
MQsoft is fast and has a constant-time sparse repeating
squaring algorithm.
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Conclusion

Performance
MQsoft is an efficient C library faster than the generic libraries.
MQsoft improves the NIST candidates GeMSS and Gui.
The parameter s accelerates the root finding of HFE
polynomials in F2n [X ].

Perspectives
The security of the parameter s must be studied in depth.
To propose methods in constant-time for the GCD and the
choice of a root during the root finding.
To add the use of AVX-512 and the VPCLMULQDQ instructiona.

aAvailable on the future Ice Lake processors (10th generation)
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Questions?

Thank you for your attention.
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