
Software Toolkit for HFE-based
Multivariate Schemes

J-C. Faugère1,2, L. Perret1,2, Jocelyn Ryckeghem2

1CryptoNext Security
2Sorbonne Université, CNRS, INRIA, LIP6, Équipe PolSys, F-75005 Paris, France

CHES, Atlanta, August 26, 2019

1/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



MQsoft1: Multivariate Quadratic Software

Motivations

11/2017 and 01/2019: beginning of the 1st and 2nd rounds of
the NIST post-quantum cryptography standardization process.
Signature: 4 second round candidates over 9 are multivariate.
Libraries: code [McBits, CHES’2013, ...], lattice [NFLlib, CT
RSA’16, ...], but no library for the multivariate-based schemes!

Our contribution: MQsoft
An efficient C library exploiting SSE and AVX2 instructions set.
Matsumoto-Imai-based schemes: QUARTZ, Gui, GeMSS.
Fast arithmetic in F2[X ],F2n and F2n [X ] (with root finding),
multivariate quadratic systems in F2 (evaluation, change of
variables, ...), constant-time implementation against timing
attacks (as often as possible).

1https://www-polsys.lip6.fr/Links/NIST/MQsoft.html
2/18

J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019

https://www-polsys.lip6.fr/Links/NIST/MQsoft.html


MQsoft1: Multivariate Quadratic Software

Motivations

11/2017 and 01/2019: beginning of the 1st and 2nd rounds of
the NIST post-quantum cryptography standardization process.
Signature: 4 second round candidates over 9 are multivariate.
Libraries: code [McBits, CHES’2013, ...], lattice [NFLlib, CT
RSA’16, ...], but no library for the multivariate-based schemes!

Our contribution: MQsoft
An efficient C library exploiting SSE and AVX2 instructions set.
Matsumoto-Imai-based schemes: QUARTZ, Gui, GeMSS.
Fast arithmetic in F2[X ],F2n and F2n [X ] (with root finding),
multivariate quadratic systems in F2 (evaluation, change of
variables, ...), constant-time implementation against timing
attacks (as often as possible).

1https://www-polsys.lip6.fr/Links/NIST/MQsoft.html
2/18

J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019

https://www-polsys.lip6.fr/Links/NIST/MQsoft.html


Matsumoto-Imai-based schemes

Matsumoto-Imai [EUROCRYPT ’88]

Public-key: a multivariate quadratic system.

Example in F2: p(x1, x2, x3) =
{

x1x2 + x2x3 + x1 + 1
x1x2 + x1x3 + x1

Verifying process: evaluation of the public-key.
Signing process: affine transformations + inversion of the
private map.

HFE-based signature schemes [Patarin, EUROCRYPT ’96]

Signing process: to find the roots of a univariate polynomial.
Schemes: QUARTZ (2001), Gui (2015), GeMSS (2017),
DualModeMS (2017), BlueGeMSS (2019), RedGeMSS (2019).

3/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Matsumoto-Imai-based schemes

Matsumoto-Imai [EUROCRYPT ’88]

Public-key: a multivariate quadratic system.

Example in F2: p(x1, x2, x3) =
{

x1x2 + x2x3 + x1 + 1
x1x2 + x1x3 + x1

Verifying process: evaluation of the public-key.
Signing process: affine transformations + inversion of the
private map.

HFE-based signature schemes [Patarin, EUROCRYPT ’96]

Signing process: to find the roots of a univariate polynomial.
Schemes: QUARTZ (2001), Gui (2015), GeMSS (2017),
DualModeMS (2017), BlueGeMSS (2019), RedGeMSS (2019).

3/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Performance

QUARTZ (a NESSIE submission)

In 2001: 4s to generate the keys, 10s to sign, 900µs to verify.
With MQsoft (new hardware + new library): 2.0ms to
generate the keys, 20ms to sign, 6.4µs to verify.

sign. scheme sec. level key gen. sign. verif.
GeMSS128 128 +220% +100% +95%
GeMSS192 192 +220% +57% +84%
GeMSS256 256 +240% +110% +75%
Gui-184 128 +1200% +100% +73%
Gui-312 192 +1600% +95% +56%
Gui-448 256 +2500% +85% +58%

Speed-up (best first round implementations compared to MQsoft),
Haswell processor. Speed-up of 100% for the signing process, and
between 60% and 100% for the verifying process.

4/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Performance

QUARTZ (a NESSIE submission)

In 2001: 4s to generate the keys, 10s to sign, 900µs to verify.
With MQsoft (new hardware + new library): 2.0ms to
generate the keys, 20ms to sign, 6.4µs to verify.

sign. scheme sec. level key gen. sign. verif.
GeMSS128 128 +220% +100% +95%
GeMSS192 192 +220% +57% +84%
GeMSS256 256 +240% +110% +75%
Gui-184 128 +1200% +100% +73%
Gui-312 192 +1600% +95% +56%
Gui-448 256 +2500% +85% +58%

Speed-up (best first round implementations compared to MQsoft),
Haswell processor. Speed-up of 100% for the signing process, and
between 60% and 100% for the verifying process.

4/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



MQsoft: architecture for HFE

Compute the inner
secret key polynomial

Root finding in F2n [X ] Evaluation of a multi-
variate quadratic system

Frobenius map in F2n [X ] GCD in F2n [X ]

Multiplication in F2n Squaring in F2n Multi-squaring in F2n

Modular reduction in
F2[X ]

Squaring in F2[X ]Multiplication in F2[X ]

Keypair generation Signing process Verifying process

5/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Efficient arithmetic in F2n

Software and libraries for number theory
Magma, a computer algebra software.
NTL, A Library for Doing Number Theory (in C++).
FLINT, Fast Library for Number Theory, less efficient in F2n!
gf2x (C library), specialized for the multiplication in F2[X ].

Implementations for specific fields

Elliptic curves [BluGue13]: F2163 , F2233 , F2283 , . . .
Gui [mpkc-128bit, gui-pq-submission]: F2184 , F2240 , F2312 , . . .

MQsoft
Arithmetic in F2n for n ≤ 576, in C using AVX2 instructions set.
Especially efficient on Skylake processors (6th generation), but
also efficient on Haswell processors (4th generation).

6/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Constant-time product in F2n = F2[X ]/f (x)

Code using SSE (128 bits) or AVX2 (256 bits) instructions sets.

Multiplication
The most important operation!

1 School-book algorithm by
block of 64 bits (PCLMULQDQ).

2 Karatsuba algorithm, the base
case depends on the processor.

n Magma NTL MQsoft
252 558 169 36-40
511 761 320 91-92

Multiplication in F2n in cycles,
Skylake processor.

Squaring
Linear operation in char. 2:
(ax + b)2 = a2x2 + b2.

1 Table lookups of square
(PSHUFB, VPSHUFB).

2 Squaring of each 64-bit
block (PCLMULQDQ).

n Magma NTL MQsoft
252 455 128 15-24
511 510 174 24-27

Squaring in F2n in cycles,
Skylake processor.

7/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Representation of multivariate quadratic systems
(m equations, n variables)

Representation "equation by equation"
The equations are stored one by one.

Example in F2: p(x1, x2, x3) =
{

x1x2 + x2x3 + x1 + 1 (1)
x1x2 + x1x3 + x1 (2)

Representation "coefficient by coefficient"
The system is stored as an equation in the big field F2m .
Example in F2: let F4 = F2[X ]/(α2 + α + 1),
p(x1, x2, x3) = 1× (1) + α× (2)

= (α + 1)x1x2 + αx1x3 + x2x3 + (α + 1)x1 + 1
This representation is used in [Berbain, Billet, Gilbert, Efficient
Implementations of Multivariate Quadratic Systems] and
MQsoft.

8/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Representation of multivariate quadratic systems
(m equations, n variables)

Representation "equation by equation"
The equations are stored one by one.

Example in F2: p(x1, x2, x3) =
{

x1x2 + x2x3 + x1 + 1 (1)
x1x2 + x1x3 + x1 (2)

Representation "coefficient by coefficient"
The system is stored as an equation in the big field F2m .
Example in F2: let F4 = F2[X ]/(α2 + α + 1),
p(x1, x2, x3) = 1× (1) + α× (2)

= (α + 1)x1x2 + αx1x3 + x2x3 + (α + 1)x1 + 1
This representation is used in [Berbain, Billet, Gilbert, Efficient
Implementations of Multivariate Quadratic Systems] and
MQsoft.

8/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1

= 1

x2

= 0

x3

= 1

x4

= 0

x1

= 1

p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) =

p.cst + p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1

= 1

x2

= 0

x3

= 1

x4

= 0

x1

= 1

p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst

+ p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1

= 1

x2

= 0

x3

= 1

x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst

+ p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2

= 0

x3

= 1

x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst

+ p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2

= 0

x3

= 1

x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1

+ p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3

= 1

x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1

+ p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3

= 1

x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1

+ p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1

+ p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4

= 0

x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3

+ p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3

+ p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2

= 0

p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3

+ p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3

+ p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3

= 1

p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3

+ p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3

+ p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3

On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4

= 0

p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3

On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4 = 0 p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3

On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4 = 0 p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3

On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4 = 0 p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.

MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4 = 0 p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.

Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Evaluation in variable-time

p ∈ F2m [x1, . . . , xn] is stored as a quadratic form in the
row-major order.
Example:
p.cst x1 = 1 x2 = 0 x3 = 1 x4 = 0
x1 = 1 p1,1 p1,2 p1,3 p1,4
x2 = 0 p2,2 p2,3 p2,4
x3 = 1 p3,3 p3,4
x4 = 0 p4,4

p(x1 = 1, x2 = 0, x3 = 1, x4 = 0) = p.cst + p1,1 + p1,3 + p3,3
On average, 75% of the monomials are null.
MQsoft: speed-up of 38%, based on unrolled loops and an
Euclidean division of the indices of the loops.
Our constant-time implementation is 10% faster on Skylake,
by using the vpermq instruction in a specific way.

9/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Root finding in F2n [X ]

Root finding algorithm of F ∈ F2n [X ] [von zur Gathen, Gerhard,
Modern Computer Algebra]

1 H = X 2n − X mod F .
2 G = GCD(F ,H). G is split and has a small number of roots.
3 Computation of all roots of G with an equal-degree

factorization algorithm.

Specificity of the HFE polynomial F

F = ∑
06j<i<n
2i+2j6D

Ai ,j X
2i+2j + ∑

06i<n
2i6D

Bi X
2i + C ∈ F2n [X ]

F is sparse (quadratic form, 1
2 log2(D)2 coefficients).

10/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Root finding in F2n [X ]

Root finding algorithm of F ∈ F2n [X ] [von zur Gathen, Gerhard,
Modern Computer Algebra]

1 H = X 2n − X mod F .
2 G = GCD(F ,H). G is split and has a small number of roots.
3 Computation of all roots of G with an equal-degree

factorization algorithm.

Specificity of the HFE polynomial F

F = ∑
06j<i<n
2i+2j6D

Ai ,j X
2i+2j + ∑

06i<n
2i6D

Bi X
2i + C ∈ F2n [X ]

F is sparse (quadratic form, 1
2 log2(D)2 coefficients).

10/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Repeating squaring algorithm

Classical method to compute X 2n − X mod F .

function RepeatingSquaring(F ∈ F2n [X ])
Xi ← X . Xi is X 2i mod F
for i from 1 to n do

Xi ← X 2
i mod F

end for
return Xi + X

end function

Specificities

The odd degree terms of X 2
i are zero.

Modular reduction by a sparse polynomial: D
2 log2(D)2 field

multiplications.

11/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Repeating squaring algorithm

Classical method to compute X 2n − X mod F .

function RepeatingSquaring(F ∈ F2n [X ])
Xi ← X . Xi is X 2i mod F
for i from 1 to n do

Xi ← X 2
i mod F

end for
return Xi + X

end function

Specificities

The odd degree terms of X 2
i are zero.

Modular reduction by a sparse polynomial: D
2 log2(D)2 field

multiplications.

11/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Improvement of the repeating squaring algorithm

Let:
X 2
i = FQ + Xi+1 the Euclidean division of X 2

i by F ,
F = Flow +X d+1Fhigh, with fdX

d the largest odd degree term,
Q = Qlow + X d−1Qhigh.

We have:
1 The odd degree terms of Fhigh are null,
2 The odd degree terms of Qhigh are null,
3 If D is even, F̃ = F − fdX

d = F̃low +X d̃+1F̃high with d̃ = d+1
2

Theorem (simplified)

Let D be an even integer, and F be a D-degree HFE polynomial.
By removing s odd degree terms of F , the Euclidean division of Xi

by F can be accelerated by a factor < 2.

12/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Improvement of the repeating squaring algorithm

Let:
X 2
i = FQ + Xi+1 the Euclidean division of X 2

i by F ,
F = Flow +X d+1Fhigh, with fdX

d the largest odd degree term,
Q = Qlow + X d−1Qhigh.

We have:
1 The odd degree terms of Fhigh are null,

2 The odd degree terms of Qhigh are null,
3 If D is even, F̃ = F − fdX

d = F̃low +X d̃+1F̃high with d̃ = d+1
2

Theorem (simplified)

Let D be an even integer, and F be a D-degree HFE polynomial.
By removing s odd degree terms of F , the Euclidean division of Xi

by F can be accelerated by a factor < 2.

12/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Improvement of the repeating squaring algorithm

Let:
X 2
i = FQ + Xi+1 the Euclidean division of X 2

i by F ,
F = Flow +X d+1Fhigh, with fdX

d the largest odd degree term,
Q = Qlow + X d−1Qhigh.

We have:
1 The odd degree terms of Fhigh are null,
2 The odd degree terms of Qhigh are null,

3 If D is even, F̃ = F − fdX
d = F̃low +X d̃+1F̃high with d̃ = d+1

2

Theorem (simplified)

Let D be an even integer, and F be a D-degree HFE polynomial.
By removing s odd degree terms of F , the Euclidean division of Xi

by F can be accelerated by a factor < 2.

12/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Improvement of the repeating squaring algorithm

Let:
X 2
i = FQ + Xi+1 the Euclidean division of X 2

i by F ,
F = Flow +X d+1Fhigh, with fdX

d the largest odd degree term,
Q = Qlow + X d−1Qhigh.

We have:
1 The odd degree terms of Fhigh are null,
2 The odd degree terms of Qhigh are null,
3 If D is even, F̃ = F − fdX

d = F̃low +X d̃+1F̃high with d̃ = d+1
2

Theorem (simplified)

Let D be an even integer, and F be a D-degree HFE polynomial.
By removing s odd degree terms of F , the Euclidean division of Xi

by F can be accelerated by a factor < 2.

12/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Improvement of the repeating squaring algorithm

Let:
X 2
i = FQ + Xi+1 the Euclidean division of X 2

i by F ,
F = Flow +X d+1Fhigh, with fdX

d the largest odd degree term,
Q = Qlow + X d−1Qhigh.

We have:
1 The odd degree terms of Fhigh are null,
2 The odd degree terms of Qhigh are null,
3 If D is even, F̃ = F − fdX

d = F̃low +X d̃+1F̃high with d̃ = d+1
2

Theorem (simplified)

Let D be an even integer, and F be a D-degree HFE polynomial.
By removing s odd degree terms of F , the Euclidean division of Xi

by F can be accelerated by a factor < 2.

12/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Sparse HFE polynomials and security

s d Number of non-zero terms of Q Speed-up

D
Experimental
reg

0 129 129 0%

5

1 65 97 33%

5

2 33 81 59%

5

3 17 73 77%

5

4 9 69 87%

5

5 5 67 93%

5

6 3 66 95%

5

7 1 65 (only even degree terms) 98%

5

Speed-up of the Euclidean division of Xi by F for D = 130. We remove
{f129X 129, f65X

65, . . . , f2d−1X 2d−1} = s terms.

Complexity of the Gröbner Basis attack [FauJou03]

The complexity of the direct attack against the HFE-based schemes
is O(nωDreg), with Dreg the degree of regularity and 2 ≤ ω ≤ 3.

13/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Sparse HFE polynomials and security

s d Number of non-zero terms of Q Speed-up D
Experimental
reg

0 129 129 0% 5
1 65 97 33% 5
2 33 81 59% 5
3 17 73 77% 5
4 9 69 87% 5
5 5 67 93% 5
6 3 66 95% 5
7 1 65 (only even degree terms) 98% 5

Speed-up of the Euclidean division of Xi by F for D = 130. We remove
{f129X 129, f65X

65, . . . , f2d−1X 2d−1} = s terms.

Complexity of the Gröbner Basis attack [FauJou03]

The complexity of the direct attack against the HFE-based schemes
is O(nωDreg), with Dreg the degree of regularity and 2 ≤ ω ≤ 3.

13/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Performance

n D s NTL Magma MQsoft
174 513 0 1090 -3.6% +840%

514 3 1100 +46% +1500%
354 513 0 4370 +16% +640%

514 3 4390 +88% +1200%

Number of mega cycles to find the roots of a HFE polynomial with NTL,
followed by the speed-ups obtained respectively with Magma and MQsoft
(Skylake processor).

Results
NTL is not adapted to the sparse polynomials.
Magma exploits the parameter s with a variable-time
implementation.
MQsoft is fast and has a constant-time sparse repeating
squaring algorithm.

14/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Conclusion

Performance
MQsoft is an efficient C library faster than the generic libraries.
MQsoft improves the NIST candidates GeMSS and Gui.
The parameter s accelerates the root finding of HFE
polynomials in F2n [X ].

Perspectives
The security of the parameter s must be studied in depth.
To propose methods in constant-time for the GCD and the
choice of a root during the root finding.
To add the use of AVX-512 and the VPCLMULQDQ instructiona.

aAvailable on the future Ice Lake processors (10th generation)

15/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



Questions?

Thank you for your attention.

16/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



References I

Daniel J. Bernstein, Tung Chou and Peter Schwabe. McBits: Fast
Constant-Time Code-Based Cryptography. CHES 2013.
Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet,
Marc-Olivier Killijian and Tancrède Lepoint. NFLlib: NTT-Based
Fast Lattice Library. CT-RSA 2016.
Tsutomu Matsumoto and Hideki Imai. Public Quadratic
Polynominal-Tuples for Efficient Signature-Verification and
Message-Encryption. EUROCRYPT ’88.
Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms
of Polynomials (IP): Two New Families of Asymmetric Algorithms.
EUROCRYPT ’96.
Jean-Charles Faugère and Antoine Joux. Algebraic Cryptanalysis of
Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases.
CRYPTO ’03.
Manuel Bluhm and Shay Gueron. Fast software implementation of
binary elliptic curve cryptography. J. Cryptographic Engineering.
Côme Berbain, Olivier Billet, Henri Gilbert. Efficient
Implementations of Multivariate Quadratic Systems. SAC 2006.

17/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019



References II

Ming-Shing Chen, Wen-Ding Li, Bo-Yuan Peng, Bo-Yin Yang and
Chen-Mou Cheng. Implementing 128-Bit Secure MPKC Signatures.
IEICE Transactions.
Joachim von zur Gathen and Jürgen Gerhard. Modern Computer
Algebra (3. ed).

18/18
J-C. Faugère, L. Perret, Jocelyn Ryckeghem CHES 2019


