Rhythmic Keccak:
SCA Security and Low Latency in HW

Victor Arribas!, Begiil Bilgin!, George Petrides?,
Svetla Nikova! and Vincent Rijmen®

! KU Leuven, imec-COSIC, Belgium, name . surname@esat .kuleuven.be
2 Vrije Universiteit Brussel, Belgium, george.petrides@vub.be

Abstract. Glitches entail a great issue when securing a cryptographic implementation
in hardware. Several masking schemes have been proposed in the literature that
provide security even in the presence of glitches. The key property that allows this
protection was introduced in threshold implementations as non-completeness. We
address crucial points to ensure the right compliance of this property especially for
low-latency implementations. Specifically, we first discuss the existence of a flaw
in DSD 2017 implementation of KECCAK by Gross et al. in violation of the non-
completeness property and propose a solution. We perform a side-channel evaluation
on the first-order and second-order implementations of the proposed design where
no leakage is detected with up to 55 million traces. Then, we present a method to
ensure a non-complete scheme of an unrolled implementation applicable to any order
of security or algebraic degree of the shared function. By using this method we design
a two-rounds unrolled first-order KECCAK-f[200] implementation that completes an
encryption in 20.61ns, the fastest SCA secure implementation in the literature to
this date.

Keywords: Glitch - non-completeness - threshold implementation - consolidated
masking scheme - domain-oriented masking

1 Introduction

Physical attacks are a serious threat to cryptographic implementations, capable of retrieving
important information such as the secret key. In particular, Side-Channel Attacks (SCA),
which are based on observing the behavior of the device without making any changes on it
or its working conditions, are used frequently due to their relatively low cost and difficulty
to be detected. In this paper, we use Differential Power Analysis (DPA), which exploits
the relation between the intermediate values produced internally during the calculations
and the instantaneous power consumption of the cryptographic device [KJJ99]. However,
our observations can be generalized to other forms of SCA, such as the ones exploiting the
electromagnetic emanation of the device [GMOO01].

Different countermeasures have been proposed that aim to make the power consumption
of a cryptographic device independent of the intermediate values. Here, we focus on
Threshold Implementations (TT) [NRR06, NRS08, NRS11] and Domain Oriented Masking
(DOM) [GMK16], which are based on secret sharing schemes and techniques from Multi-
Party Computation (MPC). Moreover, they have the advantage of providing theoretical
security on hardware if implemented according to the non-completeness property defined
in [NRR06, BGNT14a], if fed with enough entropy and if the device works under the
independent leakage assumption as described in [DFS15]. There are several papers in
the literature applying these countermeasures on the KECCAK permutations: Bertoni et

Licensed under Creative Commons License CC-BY 4.0. [@)ev |
TACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925,

Vol. 2018, No. 1, pp. 269290

DOI:10.13154 /tches.v2018.i1.269-290

mailto:name.surname@esat.kuleuven.be
mailto: george.petrides@vub.be
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13154/tches.v2018.i1.269-290

270 Rhythmic KEccAaK: SCA Security and Low Latency in HW

al. [BDPA10a] and Bilgin et al. [BDN'14] with first-order resistant implementations and
more recent work by Gross et al. [GSM17a] that proposes higher-order countermeasures.

Our contribution. In this paper, we first briefly summarize KECCAK’s sponge function,
and TT and DOM schemes (Sect. 2). Then, we analyze the recently published higher-order
DOM KEccAK implementations [GSM17a] and point out a flaw that can possibly lead
to successful attacks. We describe how careful tracing of the non-completeness property
can be done to fix this flaw for any order. We show the different behavior between the
original design and our proposal for first- and second-order implementations using TVLA
with 55 million of traces (Sect. 3). Finally, we discuss how TI can be used for unrolled
implementations without breaking the non-completeness property for the first time in
the literature. We present a first-order secure low latency KECCAK implementation that
performs an encryption in 20.61ns making it the fastest SCA secure implementation
published to date (Sect. 5).

2 Preliminaries

2.1 Keccak Permutations

KECCAK is a family of sponge functions using the permutations KECCAK-f[b] where b €
{25, 50, 100, 200, 400, 800, 1600} defines different state sizes [BDPA10b]. KECcAK [BDPA10b]
is the NIST SHA-3 standard [NIS15]. Among other properties, KECCAK stands out due to
its high performance when implemented in hardware and its great area/speed trade-offs.
The security claims of these variants follow the Matryoshka principle, i.e. analysis of
KECCAK with small sizes can easily be linked to the variants with bigger sizes. Benefiting
from this property, we work on KECCAK-f[200], which is suitable for lightweight architec-
tures, and note that the concepts presented in this paper can naturally be extended to
other choices of b. Moreover, since we simply work on KECCAK-f this work also covers
KETJE [BDPT16a] and KEYAKk [BDPT16b] authenticated encryptions.

KECCAK-f operates on a three-dimensional state S, where the bit in the coordinate
(z,y, 2) is denoted by S[z,y, z]. A round consists of five steps:

R=10xomopof, with (1)

4 4
0: Slz,vy,2] %S[x,y,z]@@S[x—l,y/,z] @@S[z+l,y',z—l],
y'=0 y'=0

p: Slz,y,2] <« Sz,y,z—(E+1)(E+2)/2],

t
with ¢ satisfying 0 < t < 24 and(0) (.):(:) in GF(5)2%2,

ort=—-1ifz=y=0,

m: Sz,vy] eS[m’,y’],with(i):(g ;)(z:),
X : S [z] —Szle(Sz+1]®1)S[z+2],

L S < S @ RC[ir], where RCJi,] is the round counter in cycle ;.

Notice that we abuse the notation to focus on specific coordinates. Moreover, addition
and subtraction in the coordinates are modular. For convenience, we provide visualizations
of these round steps in App. A.1 (Fig. 8) for KECCAK-f[200]. KECCAK-f[200] computes 18
rounds.

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 271

2.2 Masking Schemes

Different forms of masking schemes have been shown to provide provable security against
Side-Channel Analysis given the independent leakage and uniform input assumption. They
are based on secret sharing where each sensitive, i.e. key dependent, data x is divided
into s pieces (x = (x1,...,2,)) such that x = zy L ... L x,. Throughout this paper,
we consider Boolean masking where 1 is field addition denoted by @ and full threshold
sharing where all s shares need to be combined to derive z. The exact value of s is chosen
depending on the desired security level which is specified further for different flavors of
masking below.

Each function f(x) = y of the cryptographic algorithm is calculated in a shared manner
where f;(x) = y;. Masking is correct if Py; = y.

d-Probing Model. Tt has been shown in [DFS15] that if a masked circuit achieves
security under the d-probing model [ISW03] where each calculation is treated separately,
independent of the timing of the circuit, then it also provides security against d'"-order
Side-Shannel Analysis under the independent leakage assumption. Similar to [RBN'15,
FGPT17], we assume that an adversary probing a wire has information about all the
intermediate values starting from the registers to the probed point of calculation. Note
that this probing model is used specifically on hardware where glitches might occur in
the circuit. As a result a d-probing adversary would acquire the knowledge of all the
intermediate values used in all d probed wires.

2.2.1 Threshold Implementation (TI)

This masking method, which is introduced by Nikova et al. [NRRO6] for first-order security
and extended by Bilgin et al. [BGNT14a] for higher-order security, is used widely on
hardware since, unlike many masking schemes, it provides security under the non-ideal
gate assumption. That is, the gates can glitch depending on prior inputs of that cycle
before stabilizing without giving an advantage to an attacker. Below we repeat the
non-completeness definition for completeness.

Definition 1 (Non-completeness [BGNT14a]). The shared circuit f of f is d''-order
non-complete if any combination of up to d component functions f; is independent of at
least one input share.

The lower bounds of number of input and output shares such that there always exists
a sharing of an algebraic degree t function satisfying the above non-completeness property
are given in [BGNT14a] as follows:

S; .
Sout Z (znémn) .

This bound has then been used for a variety of algorithms and security orders [BNNT12,
BGN*14b, BNN*14, BGN'15, BDN 14, CBR*15].

We provide the sharings of an AND/XOR gate (z = a®bc) where (d, Sin, Sout) = (1, 3,3)
and (d, Sin, Sout) = (2, 5,10) in Eqns. (3) and (10) (in App. A.2) respectively together with
a graphical representation in Fig. 9 (in App. A.2). We refer to a sharing with s;,, = Sput = s
as an s-sharing.

Y

21 =a1 ®bicy @ bicy @ bacy,
zg = ag @ bacy @ bacz @ bsca, (3)
z3 = a3z ® bscs D bicz D bscy.

272 Rhythmic KEccAaK: SCA Security and Low Latency in HW

In order to satisfy the non-completeness property, the compression (C) from s,y t0 Sip,
shares must follow a synchronization layer such as registers. The first-order case becomes
advantageous since So¢ = Sin and this intermediate synchronization layer is not necessary
enabling a one cycle implementation. If a sharing dissatisfies the non-completeness property,
we call it a complete sharing.

Another property introduced by TT is a uniform sharing. Since we only use permutations
in this paper, we use the simplified definition provided below.

Definition 2 (Uniform Sharing [BNNT12]). The s-sharing of an n-bit permutation
f(x) =y is uniform if its sharing f(x) =y is an ns-bit permutation.

Note that this uniformity definition is compatible with the definition presented for
higher-order security in [BGN*14a] when y is taken as the sharing after compression.
Moreover, if this property is satisfied for each step of a cryptographic algorithm, the
algorithm provides univariate security without the need of additional randomness. It has
been shown in [RBN*15] that uniformity condition is not enough for multi-variate security
in the higher-order case. The authors show that it is possible to achieve higher-order
multi-variate security for TI by inserting fresh randomness to each s,,; output shares just
before the compression. This refreshing (R) naturally provides a uniform sharing.

2.2.2 Domain Oriented Masking (DOM)

In [GMK16], Gross et al. introduced d""-order secure DOM-indep multiplier which uses
Sin = d+ 1 input shares and d(d + 1)/2 units of randomness. DOM multiplier assumes s;;,
domains.

The sharing structure of DOM-indep multiplier uses d + 1 input shares for hardware
and is a follow up of Reparaz et al. [RBNT15] which provides security given only the
independence of the shared input variables. The difference between DOM-indep as opposed
to [RBN*15] multiplier is the significant randomness optimization, from (d + 1)? to
d(d 4+ 1)/2. This optimized shared multiplier has been used in [GSM17a] to provide
very small implementations of KECCAK with higher-order security claim. We provide a
DOM-indep AND gate (z = ab) where (d, Sin, Sout) = (1,2,4) and (d, Sin, Sout) = (2,3,9)
in Eqn. 4 below and in Eqn. 11 in appendix. The parenthesis [.] and (.) represent the
mandatory and optional synchronizations respectively and r refers to the randomness used
for refreshing.

21 = (a1h1) ® [arby & 1],
29 = [Gle) 7“] 5%} (a2b2)- (4)

In [GMKI16] a second multiplier called DOM-dep multiplier is also introduced. DOM-
dep has the advantage of not relying on the independently shared inputs assumption of
other d + 1 share schemes, such as DOM-indep and [RBN*15], while using less randomness.
For details of DOM-dep multiplier and randomness reductions of DOM, we refer to the
original paper. Here, we only focus on DOM-indep multiplier which was used in [GSM17a]
and the non-completeness property. Therefore, we refer to DOM-indep as DOM for brevity.

3 Round-Based Implementations

KECCAK is implemented for a variety of platforms and constraints. The smallest round-
based implementation claiming security against SCA is presented in [GSM17a] and uses
DOM. In this section, we first show a potentially exploitable weakness of that round based
implementation based on the failure of non-completeness property. We then verify the

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 273

observability of our claims on an FPGA using t-test based leakage detection. Finally,
we discuss how a sharing using s;, > d + 1 shares should be implemented such that it
satisfies the non-completeness property and the restrictions of such an implementation.
Note that our analysis covers round-based implementations of any order but does not cover
the serialized architectures presented in [GSM17a].

3.1 Analysis of DOM-Keccak

A traditional round-based implementation of KECCAK receives the input of 6 from a
register; 0, p, m, x and ¢ operations are calculated within the same clock cycle and the
output of ¢ is written to a register. When we consider a d + 1-share implementation, it
is evident that y-refreshing needs to be separated from x-compression by registers to
achieve non-completeness marking the end of the cycle. The difference between these two
architectures are depicted in Figure 1.

Input

State 6 o1 [] H j m Output

Sin b Reg Sin b Sin b \i‘suutj b sboutjsti)n u

ROUND R C

Figure 1: Datapath of protected (blue) and unprotected round-based Keccak implementa-
tion with and without x-compression respectively.

The first-order implementation in [GSM17a] uses the sharing of x in Eqn. (5) up to
the synchronization register. The randomness 7 is taken from another (independent) part
of the state. The synchronization is performed only on the cross-domain shares Sh[z] and
S%lz] by using a register triggered on the negative edge of the clock while triggering the
state register in the positive edge (double clocking). Analyzing each linear and nonlinear
step individually as is done in [GSM17a], shows that each separate step is secure against
first-order SCA. Moreover, it can easily be verified that the non-completeness property
is satisfied in each separate step. However, the non-completeness of any implementation
should be verified from register to register since the glitchy behavior can accumulate.

Silz] « Sifz]® (Silz+ 1] @ 1)Si[z + 2],

Shlx] « Si[z + 1])S3[z + 2)@r

Silz] « Saolx +1]Si[x + 2]@r (5)
Silz] + Szl @ (Salz+ 1] @ 1)52[:1: +2].

After analyzing one round of the aforementioned implementation, we noticed that the
non-completeness property from register to register is not satisfied for 112 out of 200 round
output bits invalidating a condition for security. Below we trace back the input shares
used to calculate a specific bit of the state particularizing Eqn. (1) for first-order secure
implementation. A graphical representation is also provided in Fig. 10 in App. A.3.1. We
use Slf to refer to the output of f for share S;.

274 Rhythmic KEccAaK: SCA Security and Low Latency in HW

Tracing back output bit SX [4,1,0] of the y permutation:

x ' SX[4,1,00 « SF[0,1,0]ST[1,1,0]&r

7=t SF[0,1,0] < S5[3,0,0]
ST[1,1,0] <« SP[4,1,0]

p~t: S803,0,00 <« SY[3,0,4]
S?[4,1,00 « SY[4,1,4]

4 4
o7 883,04« S:B3.040EPS: [2v,4] 0 P s [4,3]
y'=0 y'=0

4 4
St 14 —siaLge @ s 3y, e > sifoy,s]

y'=0 y'=0

From these expressions it can be derived that the output bit S [4, 1, 0] of the non-linear
layer depends, among others, on the input bits S [3,0,4] and S3 [3,0,4]. This means that
all shares of [3, 0, 4] are used and hence, non-completeness fails. Note that similar complete
output bits can also be found for higher-order implementations. We provide a second-order
example in App. A.3.1.

3.1.1 Evaluation

To illustrate the problem presented above we tested our first-order round-based DOM-
KECCAK implementation that follows the structure depicted in Fig. 1 on FPGA. Note that
we used our own implementation instead of the one provided by the authors of [GSM17a]
in [Sch17]!. The differences between our design and that of [Sch17] are (1) we do not use
negative-edge triggering for the cross-domain shares for ease of analysis leading to a two
cycle per round implementation; and (2) we always use fresh randomness to ensure that a
possible problem is not caused by the degradation of uniformity.

Platform. To evaluate our design, we deploy it into a Spartan-6 Xilinx FPGA on a
Sakura-G board, which is specifically designed for side-channel evaluation. To reduce the
noise during the evaluation we split the implementation into two different FPGAs: a control
FPGA handles I/O with the host computer and supplies data in masked representation
to the crypto FPGA. Crypto FPGA holds a PRNG, which generates the randomness for
refreshing, and our masked KECCAK designs. In order to get the cleanest possible traces,
we clock the PRNG in the negative edge to avoid extra noise and use a very slow 3 MHz
clock so that we are sure there is no overlap in the power consumption between cycles.
The design is synthesized using the Xilinx tools with the property KEEP HIERARCHY set to
yes, in order to avoid optimizations among the different blocks what would compromise
the security of the design. We sample at 1.0GS/s with 2000 points per frame over two
rounds and a half.

TVLA. We use non-specific test vector leakage assessment (TVLA) method described
in [CMG™13] to detect leakage. Note that this t-test based leakage detection method is
not used to mount an attack and retrieve the key. From a theoretical point of view, the
presence of leakage is a necessary, but not sufficient condition for an attack to succeed.

1Please note that we have contacted the authors of [GSM17a]. They have acknowledged our findings
and provided an update of their implementation accordingly [GSM17b]

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 275

250 6

200

tvalue

&5 \// -4
100 6
200 400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600
10 250
° M,{ 200
At e s Fl 3
ia (J,.«W’ w Ul ad | 'Ll" 150 A%
woll)
20 ’J\i
o ol L
§ - 5
- ! o =
E
-a0 | L
/ / i =
s0
-100)
60 -1s50 >
70 200

d
:

i i -
AP

200 400 600 800 1000 1200 1400 1600 - 200 400 8t 1000 1200 1400 1600
time(samples) time(samples)

Figure 2: TVLA on our first-order DOM-KECCAK implementation. Left: Masks off with
20k measurements. Right: masks on with 55M measurements. From top to bottom: first-,
second-, and third-order analysis respectively.

However, not observing leakage gives confidence to the designer. We choose our confidence
level to be 99.9995% which corresponds to absolute t-values being greater than 4.5 for
failure.

Two different tests are performed, namely, Fix vs. Random with masks off and
with masks on. In both cases the idea is to compare the power consumption of the
KECCAK-f given to different states, the first one, chosen at random and fixed through
all the encryptions and the second one, randomly chosen as well, that changes for every
encryption. The test determines whether it is possible to distinguish between one another
and hence, find potentially exploitable leakage depending on the state. When masks are
off leakage is expected, since the countermeasures are switched off. On the other hand,
when masks are on we expect no first-order leakage for a first-order implementation. We
ensure that the initial sharing is done properly and focus our analysis only on the first
two rounds of the cipher to validate our claims. All designs are analyzed under this same
conditions in this work.

Figure 2 shows results of TVLA for 20 thousand traces when masks are off and 55 million
traces when masks are on for a DOM-KECCAK implementation. In this case, although the
leakage is reduced greatly, we see that the t-score goes over 4.5 for a significant number of
sample points during both first and second rounds. We emphesize that we make no claims
on this observation leading to a successful attack. Our goal is to make leakage assessment
comparison between this implementation and our proposal which is presented in the next
section.

3.2 Non-Complete Round-Based Architecture

The question that naturally arises after this analysis is the root of the non-completeness
failure. Clearly, it is important to take into account the effect of the linear layers in

276 Rhythmic KEccAaK: SCA Security and Low Latency in HW

State

X]
S Reg s S Sin) H St | Sm_‘ S

Figure 3: One round structure of the naive fix, with refreshing (R) and compression (C)
before ¢.

State

Figure 4: One round structure of NC-KECCAK, with the state register after the linear
permutations and ¢ before the second layer of registers.

combination with the non-linear layer within a cycle, since x and the linear operations
including 6 are secure individually. A detailed observation shows the following.

Order of operations. The order of linear and non-linear operations within a round is
important. If the round structure of a cryptographic algorithm follows the traditional
SPN approach where the linear operation follows the non-linear operation within a round,
we would not observe this failure of non-completeness if the non-linear operation is non-
complete. For higher orders, one still needs to ensure composibility, which is not the
objective of this paper’s discussion.

Linear transformations. The structure of KECCAK linear operations, in particular 6
which shuffles and combines several state bits, causes the non-completeness to fail when y
is applied later. Operations p and 7 being simple wirings do not combine several bits and
hence do not cause any problem.

Naive fix. Following above observations, one can clearly see that it suffices to introduce
a register between the linear operations and x to secure the design. However, this new
layer of registers increases the number of cycles required per round without a significant
increase in maximum frequency. Fig. 3 illustrates this architecture. However, the main
goal tried to achieve with a parallel implementation is a low-latency design, compared to a
serial implementation that would have a higher latency but smaller area.

Our design. In order to reduce the latency, we push the state registers to after the
linear operations, using this layer of registers to break the dependencies created by these
operations. In this case we need two clock cycles to perform one round and hence 36 cycles
for KECCAK-f[200]. Figure 4 presents this structure, with which the implementation is
fulfilling non-completeness. Note that it is possible to neg-edge clock the second layer of
registers saving one clock cycle and reducing the area by approximately 2800GE. Here, we
use two separate registers for clear analysis of the target difference.

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 277

3.2.1 Evaluation

We present the results for our non-complete KECCAK (NC-KECCAK) for both first- and
second-order implementations, which follow the structure described in Fig. 4. We kept
exactly the same setup as in Section 3.1.1 for comparability. In the case of the first-order
secure implementation no first-order leakage appears, while in the second-order neither
first- nor second-order leakage appear up to 55 million traces. Fig. 5 presents these results.

200 400 600 800 1000 1200 1400 1600

tvalue
G b 0N Ao s Nw s

tvalue
8 8 8
e
i
L

3
o
o & b O ML o a N w s A b ONL 0N boD

. | | |

200 400 600 800 1000 1200 1400 1600 200 00 600 800 1000 1200 1400 1600
time(samples) time(samples)

tvalue

Figure 5: TVLA on our first (left) and second-order (right) NC-KECCAK implementations
over 55M traces. From top to bottom: first-, second-, and third-order analysis respectively.

3.3 Performance Analysis

To synthesize our designs we use Synopsys Design Compiler Version 1-2013.12 with NanGate
45nm Open Cell Library. The synthesis is done by using the -compile command and
setting the flag —exact_map to avoid any optimization that could affect the security. The
option -no_autoungroup is set by default when using -compile. This way it keeps the
hierarchy of the design so that no optimizations in between modules can happen. Table 1
shows the results for this section’s implementations. Note that the number of random
bits presented is for each round, i.e., for every two clock cycles, and can be reduced
significantly using the ideas from [BDNT14, GSM17a, Dael7] which is not the goal of this
paper. What is important is that the performance results with and without the suggested
fix is comparable.

4 Unrolled Implementations

A typical way to gain low-latency is using an unrolled implementation where more than one
round of the algorithm is implemented to finish within one cycle. Even though examples of
such unprotected implementations exist, there are no such SCA protected implementations
to our knowledge.

278 Rhythmic KEccAaK: SCA Security and Low Latency in HW

Table 1: Synthesis results for the different designs

AREA(GE) Max.Freq.
DESIGN X 0 State Total Rand. Cycles (MHz)
Plain 542.63 638.4 1333 2759 - 18 1136
DOM-KECCAK 1st 9881* 1600 2667 17105 200 36 1087
NC-KECCAK 1st 2613 1600 5334% 17493 200 36 1300
DOM-KECCAK 2nd 23177* 2400 4000 33535 600 36 1111
NC-KECcCAK 2nd 6200 2400 12001* 35223 600 36 1205

* This number includes the registers layer needed before the compression

In what follows, we discuss the input and output shares on a unrolled implementations
and their impact on the choice of security level in each round/layer. In order to do that,
we first focus on unrolling a quadratic function twice, i.e. implementing two layers in
one cycle. Then we generalize our observation to implement F = RN o ... o R! with N
layers, each layer being a degree tp: function, in one cycle. We derive a formula of security
order to consider in each layer (dgi) without specifying the exact sharing or any claims on
optimality.

4.1 Quadratic Functions

Let R! be a quadratic round function (tg: = 2), similar to that of KECCAK permutations.
And let us initially target two rounds/layers, ' = R? o R!. That is, we want to share and
calculate not a quadratic, but a quartic function (tp = 4) in a cycle.

First-order resistance. For additional simplicity, let’s assume R’ is composed of a series
of AND gates. The dependency on the input bits for one output bit is provided in Fig. 6.
The indices in the parenthesis describe the input shares used in each share of a particular
intermediate variable given TI as the underlying sharing. It is clear that if we use a
first-order secure sharing for the first layer (Fig. 6, left), the first layer would indeed
be secure. However, the second layer which uses the first layer’s output can not satisfy
non-completeness, i.e. every output share of F' would depend on all input shares of F.

First layer Second layer First layer : Second layer
(1.2,3) (1,2.3.4.5) 1(12,13,14,15,23,

(12,43,31) —] ! 24,25,34,35,45)
(1.2,3 : (1.2,3.4.5) ;
D— (1.2,3.4.5) D—
(1.2,3.4,5) ;
(12,23,31) — 1(12,13,14,15,23,

, i 24,25,34,35,45)

ka
(1)
—

(S
Pt

|w|
st

Figure 6: Quartic operation with (left) first-order sharing and (right) second-order sharing
for the first round/layer of operations.

Since the security degrades with each nonlinear layer due to combination of shares, and
that we aim first-order security even at the last layer, we decided to define the security
order of each layer by crawling backwards from a single output bit to input bits and
observing the requirements. Moreover, we benefit from the d**-order non-completeness

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 279

property. That is, we observe that first-order non-complete output bits of F' requires
each combination of two input shares of R? being independent of the secret. That is any
combination of two output shares of R' should be independent of the input which is the
definition of second-order non-completeness. Hence, if we implement R' and R? such
that they satisfy second- and first-order non-completeness respectively, F' would satisfy
first-order non-completeness (Fig. 6, right).

Second-order resistance. We can repeat the same train of thought to analyze the security
level each layer needs for second-order secure F'. That is, if each combination of two output
shares of R? is required to be independent of the secret, due to the nature of 2-input AND
gate, each combination of four output shares of R! should be independent of the secret.
This implies a fourth-order secure implementation for the first layer whereas a second-order
secure implementation for the second layer.

Linear layer. It is only natural to question the impact of linear layers between quadratic
operations. If we use a TI with td 4 1 sharing instead of a d + 1 DOM-indep like sharing,
we have the freedom to have dependent shared inputs in each layer leading to a trivial
inclusion of linear layers by simply producing the j** output shares using only j** input
shares. We emphasize here the importance of considering the non-completeness of the
whole cycle instead of only nonlinear layers.

4.2 Extending the Methodology

The above observation can be extended to higher degree functions and more rounds.
Consider ' = RN o --- o R! where target security level for F is dp. Similar to Section 4.1,
we can crawl back to decide the security level desired in each layer by using the following

recursive formula:
dr ifi =N,
dpi = o (6)
tRiJrl * dRi+l ifi< N

Note that the above recursion is independent of the masking scheme. It neither specifies
the particular sharing to be used in each layer for all possible functions nor necessarily
provides the optimal result. Moreover, when higher-order SCA resistance is considered,
the particularities of the refreshing layer becomes critical to provide multi-variate security.
Clearly, the above formula does not specify the re-masking that should be used in order
to provide multi-variate security for the whole algorithm. Hence, it should be taken as
a suggested starting point rather than a complete recipe. One should always verify the
security of the complete cycle and its composibility independently.

5 Speeding Up Keccak Implementations

Our goal in this section is to push the limits of low-latency masked KECCAK implementation
using standard CMOS-like cells. Clearly, it is challenging to provide a secure unrolled
implementation of KECCAK that calculates more than one round in one clock cycle using
a S, = d + 1 share masking scheme due to its high diffusion per round possibly causing
dependencies in shared input variables. However, TI becomes advantageous in this setting
with its increased number of shares and security even with dependent shares inputs.

We first discuss following Eqn. (6) where TT is used as the masking scheme and s;,
is taken as the minimum from Eqn. (2). We elaborate on the challenges we had and the
possibility of using another TI sharing with bigger s;, to reduce the cost and increase
performance. Our security analysis and synthesis results indicate that this is the fastest
protected hardware implementation published to this date.

280 Rhythmic KEccAaK: SCA Security and Low Latency in HW

5.1 First Attempt for Keccak

According to Eqn. (2), a first-order SCA resistant implementation of a quartic function
requires $;, > 5 shares given the algebraic normal form (ANF) of this function. However,
for KECCAK and many other algorithms alike having a non-complete and uniform sharing
based on the ANF of F is not trivial due to the high diffusion of state bits. For such
algorithms having a systematic approach such as the one described in Section 4 can be
useful.

Sharing R'. Following Eqn. 6 we start with a second-order non-complete TI sharing
with s;, = 5 and 4 = 10 (5 — 10) for R'. We provide the output dependencies on the
input shares for one such sharing in Eqn. (7). The exact sharing, which is detailed in
App. A.4.1, is based on the sharing of an AND/XOR gate introduced in [BGNT14a]. It
can be verified that every combination of two outputs is independent of at least one input
share.

f1(51,52) S = f6(S1,S3)
2(52, Ss3) Sz = f7(Ss,S5)

53 = [3(S3,54) Sé fs(8s5, 52) (7)
54 = f4(S4,S5) = fo(S2,54)
[5(S5,51) Slo = f10(S4, 51)

Sharing R2. When we choose the sharing of R? that makes it first-order secure, we also
need to ensure that the non-completeness holds when R! and R? are combined. Due to
the linear layer of KECCAK-f, the AND gates in R? depend on the outputs of more than
two AND gates of R'. Hence, not every first-order non-complete sharing of R%leads to a
non-complete F. Moreover, even though many direct 10 — 10 sharings of R? satisfying
the above restriction can be derived following a simple procedure, clearly we prefer a
compatible first-order secure non-complete sharing for R? where s;, = 10 and sour = 5
(10 — 5) in order to avoid further increase in number of shares. Hereon, we call a sharing
where $;,, > Sout & compression sharing. Note other other examples of compression sharings
can be found in literature [BGNT15, BGN*14b].

For a target of 10 — 5 compression sharing, we need to be careful since many shares
are combined. Eqn. (8) illustrates the input-output dependency of one possible sharing for
R?2. We provide the exact sharing we use in App. A.4.2.

SY = f1(51, 83,85, 56,89, 510) ()
Sy = fa(Sy, 5%, SE, S, S%,85) (Missing input Sy)
S. f3(S1, 5%, SE, 5§, 56, S10) (Missing input S3) (8)
SAIL/ = f4(Sé,Si,Sé,Sé7S§,Sio) ()
S f5(53, 55, 84,57, 5%, 59) ()

Missing input Ss

Missing input So
Missing input S;

5.2 Our Final Design
5.2.1 Optimized Sharings

The greatest area contributor of a KECCAK parallel implementation, is the y step. The
number of gates in the non-linear operation scales with the number of input shares as
follows:

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 281

e Number of AND gates = (s;” > + Sin

e Number of XOR gates = < s;" > + Sin

e Number of NOT gates = s;;,

The area overhead of R? caused by increasing the number of shares to 10 is significant.
Therefore, we decided to look for another sharing for the first layer that produces less
outputs. One possible option would be the 6 — 7 sharing proposed in [BGN*14a]. On
the other hand, by investigating further we found 6 — 6 sharings for both layers which
provides first-order non-completeness when combined. The abstract sharings and the exact
equations are provided in Eqn. (9), and in App. A.4.3 and A.4.4 respectively.

S1 = f1(S1, 52, 53) S{’ = f1(S4, S%,S§) (Missing input Sh)
Sy = f2(S1, 54, S5) = f2(5%,5%,55) (Missing input S2)
S5 = f3(S1, 5S4, S6) S" = f5(55,5%,54) (Missing input Ss) (9)
Sy = fa(S2, S5, 56) Sy = fa(S7,54,55) (Missing input Sy)
5 = f5(S3, S5, S6) SY = f5(57,5%,5;) (Missing input Ss)
St = f6(S2,S3,54) S¢ = f6(S1,5%,55) (Missing input Se)

With this sharing we are able to reduce the area considerably without failing non-
completeness.

5.2.2 Performance Analysis

We present the performance results for two round unrolled implementation using the
sharings presented in Sections 5.1 and 5.2.1 in Table 2 for comparison.

The cost of x! and ' indicates that R' in 5 — 10 — 5 sharing is a bit cheaper than
the one using 6 — 6 — 6. However, x? of 5 — 10 — 5 is significantly more expensive
due to the greater number of inputs as expected. In the 6 — 6 — 6 scheme the state
register is a bit bigger since there is one more share to store. All things considered, the
area reduction of our design compared to a first attempt is clear.

Given the results, it is possible to see that the time needed for a single encryption is
20.61ns when synthesizing the design with the NanGate 45nm library.

Table 2: KECCAK-f[200] first-order secure unrolled implementations’ performance results
using NanGate 45nm library. Comparison with Parallel implementations from [BDN™14]
and PARALLEL double clocked and PARALLEL pipelined from [GSM17b]

AREA (kGE) Max.Freq.
DESIGN x! X2 61 62 State Total Cycles (MHz)
5—10—5 13.53 59.89 4.28 9.75 6.7 99.34 9 395.25
6—+6—>6 22.40 22.16 5.66 5.66 8.03 70.12 9 436.7
Previous work*
3sh [BDN+14] - - - - 27.2 116.6 25 592
4sh [BDN*t14] - - - - 36.3 139.4 24 588
D.c. [GSM17b]** - - - - 38.9 100.5 48 803.9
Pipel. [GSM17b]** - - - - 36.8 1118 72 837.5

* Implementations of KECCAK-f[1600]
** Results gathered with library UMC 130nm

282 Rhythmic KEccAaK: SCA Security and Low Latency in HW

5.2.3 Evaluation

We evaluate the optimized design using the 6 — 6 — 6 sharing. The test is done under
the conditions already presented in Section 3.1.1. Since this implementation is much faster
than the previous ones, the analysis covers 10 rounds of the cipher.

The results are presented in Fig. 7 for masks off and masks on. It is possible to
appreciate that the countermeasures indeed prevent leakage from appearing in the first-
order. Moreover, we observe no leakage in the second or in the third order t-test using
55 million measurements. We attribute this to the noise introduced by the large number of
shares used. Therefore, we can affirm this is the fastest first-order SCA resistant KECCAK

implementation published to this date.

200 400 600 800 1000 1200 1400 1600

A

200 400 600 800 1000 1200 1400 1600

\ ol ;
- W™ W 'w/l

tvalue

200 400 600 800 1000 1200 1400 1600

tvalue
»
8

St

100 \.l
o
200 00 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600
time(samples) time(samples)

SO

I ST T - S VS N B O - P R S I S T - I L R R

Figure 7: TVLA on first-order secure double round KECCAK implementation. Left: Masks
off. Right: masks on. From top to bottom: first-, second- and third- order analysis.

6 Conclusions

In this work we presented, on the one hand, a flaw in previous round based KECCAK secure
implementations on hardware and how to address this issue. We propose this solution
for KECCAK permutations, but it is also applicable to other algorithms that concatenate
several linear and non-linear operations. On the other hand, we introduced a method to
speed up masked hardware implementations. Thus, by applying this method, the fastest
SCA secure KECCAK implementation is presented.

Acknowledgments

This work was partially supported by COST Action (IC1306) through an STSM grant
to George Petrides, by the Research Council KU Leuven (C16/15/058) and by the NIST
Research Grant 60NANB15D346. Begiil Bilgin is a Postdoctoral Fellow of the Fund for

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 283

Scientific Research - Flanders (FWO). George Petrides is also affiliated to Eclat Enterprises
Ltd, Cyprus.

References

[BDN+14]

[BDP16a]

[BDP*16b)

[BDPA10a]

[BDPA10b]

[BGN14a]

[BGN14b]

[BGN15]

[BNN+12]

[BNN*+14]

[CBR*15]

B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. Van Assche.
Efficient and first-order DPA resistant implementations of keccak. in CARDIS,
volume 8419 of LNCS pp 187-199, June 2014.

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer. Caesar
submission: Ketje v2, September 2016.

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer. Caesar
submission: Keyak v2, September 2016.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Building power anal-
ysis resistant implementations of keccak. Second SHA-3 candidate conference,
August 2010.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak reference.
http://http://keccak.noekeon.org/, January 2010.

B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-order
threshold implementations. In ASTACRYPT, volume 8874 of LNCS, pages
326-343. Springer, 2014.

B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A more efficient
aes threshold implementation. In D. Pointcheval and Damien Vergnaud,
editors, Progress in Cryptology-AFRICACRYPT 2014, volume 8469 of Lecture
Notes in Computer Science, pages 267-284. Springer International Publishing,
2014.

B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Trade-offs for
threshold implementations illustrated on AES. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 34(7):1188-1200, July
2015.

B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and G. StAijtz. Threshold im-
plementations of all 3 x 3 and 4 x 4 s-boxes. In Emmanuel Prouff and
Patrick Schaumont, editors, Cryptographic Hardware and Embedded Systems-
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 76-91.
Springer Berlin Heidelberg, 2012.

B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, N. Tokareva, and V. Vitkup. Thresh-
old implementations of small s-boxes. Cryptography and Communications,
pages 1-31, 2014.

T. De Cnudde, B. Bilgin, O. Reparaz, V. Nikov, and S. Nikova. Higher-order
threshold implementation of the AES s-box. In Naofumi Homma and Marcel
Medwed, editors, Smart Card Research and Advanced Applications - 14th
International Conference, CARDIS 2015, Bochum, Germany, November 4-0,
2015. Revised Selected Papers, volume 9514 of Lecture Notes in Computer
Science, pages 2569-272. Springer, 2015.

284

Rhythmic KEccAaK: SCA Security and Low Latency in HW

[CMGT13] J. Cooper, E. De Mulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi.

[DaelT]

[DFS15]

[FGP*17]

[GMK16]

[GMO01]

[GSM17a]

[GSM17b]

[ISW03]

[KJJ99]

[NIS15]

[NRRO6]

[NRS08]

Test vector leakage assessment (TVLA) methodology in practice. Interna-
tional Cryptographic Module Conference, 2013. http://icmc-2013.0rg/wp/
wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf.

J. Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
137-153. Springer, 2017.

A. Duc, S. Faust, and F.-X. Standaert. Making Masking Security Proofs
Concrete, pages 401-429. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

S. Faust, V. Grosso, S. Merino Del Pozo, C. Paglialonga, and F.-X. Standaert.
Composable masking schemes in the presence of physical defaults and the
robust probing model. Cryptology ePrint Archive, Report 2017/711, 2017.
http://eprint.iacr.org/2017/711.

H. Gross, S. Mangard, and T. Korak. Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. Cryptology
ePrint Archive, Report 2016/486, 2016. http://eprint.iacr.org/2016/
486.

K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete
results. In Cetin K. Kog, David Naccache, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems-CHES 2001, volume 2162 of LNCS,
pages 251-261. Springer Berlin Heidelberg, 2001.

H. Gross, D. Schaffenrath, and S. Mangard. Higher-order side-channel pro-
tected implementations of keccak. In 2017 Euromicro Conference on Digital
System Design (DSD), pages 205-212, Aug 2017.

H. Gross, D. Schaffenrath, and S. Mangard. Higher-order side-channel
protected implementations of keccak. Cryptology ePrint Archive, Report
2017/395, 2017. https://eprint.iacr.org/2017/395.

Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware
against Probing Attacks, pages 463-481. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology - CRYPTO 99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages
388-397, 1999.

NIST. SHA-3 Standard: Permutation-based Hash and Extendable Output
Functions. 2015.

S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against
side-channel attacks and glitches. In ICICS, volume 4307 of LNCS, pages
529-545. Springer, 2006.

S. Nikova, V. Rijmen, and M. Schlaffer. Secure hardware implementation of
non-linear functions in the presence of glitches. In ICISC, volume 5461 of
LNCS, pages 218-234. Springer, 2008.

http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://eprint.iacr.org/2017/711
http://eprint.iacr.org/2016/486
http://eprint.iacr.org/2016/486
https://eprint.iacr.org/2017/395

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 285

[NRS11] S. Nikova, V. Rijmen, and M. Schlaffer. Secure hardware implementation of
non-linear functions in the presence of glitches. J. Cryptology, 24(2):292-321,
2011.

[RBN*15] O. Reparaz, B. Bilgin, S. Nikova, B. Gierlichs, and 1. Verbauwhede. Consoli-
dating Masking Schemes, pages 764—783. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[Sch17] D. Schaffenrath. Dom protected hardware implementations of keccak. https:
//github.com/hgrosz/keccak_dom, 2017.

https://github.com/hgrosz/keccak_dom
https://github.com/hgrosz/keccak_dom

286 Rhythmic KEccAaK: SCA Security and Low Latency in HW

A Appendix
A.1 Keccak Round Steps

o

,

ot of |

D) NNCMNM

<+—Te [Te

[

NON A h{
L il o« [
L || Ol O
~ \ | ETe

Te[¥ . ¥

T step

X

step L step

Figure 8: KECCAK-f[200] state and steps [BDPA10D].

A.2 Second-order Masking

A.2.1 Threshold Implementation (TI)

z1=a1 ®bicy D bies ® bscy
z3 = a3 @ bgcg B bics P by
z5 = a5 D bscs @ bacs B bscy
z7 = bocy @ byco

Z9g = b305 ® b5C3

A.2.2 Domain Oriented Masking (DOM)

Z9 = a9 @ baco D bica @ bacy
24 = Qg D bycy D bicy O bycy
26 = bacg @ bzca
28 = bgcqg @ bycs

Z10 = bycs @ bscy

z1 = (a1b1) @ [a1by © r1] © [a1bs @ 2],
23 = [agby @ 1] ® (azbz) ® [azbs @ 73],
z3 = [azby ® ro] ® [asbs B 3] ® (asbs).

(10)

A.3 Non-completeness Failure in Round-Based DOM Implementation

A.3.1 First Order.

Fig. 10 presents graphically what is demonstrated in Eqn.6 numerically:

A.3.2 Second Order.

Here we trace back two of the bits that together fail non-completeness in the second-order
implementation, following the same idea as for the first-order case:

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen

287

byf2 ' g
by a3 by ay by as - %} : 5 AL
_—=-=-- nonlinear layer A" PR ! o
47— lnear laver £ o 3
g

k)/ e == refreshing layer R 2
& - b z 1
i o "~
? ys b N Y
=~

=

az

_.-refreshing layer R

Figure 9: First- and second-order threshold implementation with randomness [RBNT15].

First bit

x': S8¥[0,0,77 — S310,0,7]® ST [1,0,7] S5 [2,0,7]

7~ 1. S7100,0,77 — S5[0,0,7]
Sr(1,0,7 — S5[1,1,7]
S512,0,7 — S5[2,2,7]

p~t: 8200,0,77 — S9100,0,7]

S5[1,1,7 = 551,1,3]
S8102,2,7 — S9[2,2,4]

4 4
o7 8210,07 = S200,0,70 (P sz [40.7] & @) 52 [1,/,6]

y'=0 y’=0
4 4
si,1,3 = s2(L1sle @ s (0.8 e) S [20,2]
y’=0 =0

4 4
$812,2,4) - s:22400@) s [Ly 4]0) S [3.v,3]
y/=0 /=0

288 Rhythmic KEccAaK: SCA Security and Low Latency in HW

S

r step

Figure 10: Tracing back output bit CX [4,1,0].

Second bit

X"t SY[2,0,5] — ST [4,0,5] 57 [3,0,5]

7l ST[4,0,5] — SP[4,4,5]
S7(3,0,5] — S5[3,3,5]

p~t: SP[4,4,5) — SY[4,4,7]
S%1(3,3,5] — S93,3,0]

4 4
o0 st47 - siae@ s 3.7 o@D si[oy,6]
y'=0 y'=0
4 4
$813,3,00 —S3[3,3,000 @) ss[2.5,0] @ > Ss[4.4,7]
y/=0 y/=0

V. Arribas, B. Bilgin, G. Petrides, S. Nikova and V. Rijmen 289

A.4 Double round sharings

A41 5—10

Silx] +— Si[z] @ (Si[zr+ 1] @ 1)S1[z + 2] & S1[x + 1]S2[z + 2] ® S2[z + 1]S1[x + 2]
Shlx] <+ Saz] ® (S2[x + 1] @ 1)S2[z + 2] @ S2[x + 1]S3[x + 2] © Ss[z + 1]Sa[z + 2]
Silx] <+ Sslz] ® (Ss[x + 1] @ 1)Ss[x + 2] @ S3[x + 1]Sa[x + 2] © Sa[z + 1]Ss[z + 2]
Silx] <+ Safz] ® (Salz + 1] @ 1)Salz + 2] ® Sa[z + 1]S5[x + 2] ® Ss[z + 1]Sa[z + 2]
Silx] + Ss[z]® (Ss[z+ 1 @ 1)Ss[x + 2] ® Ss[x + 1]S1[x + 2] ® S1[z + 1]Ss[z + 2] (12)
Sglr] <+ Silz+1]Ss[z + 2] @ S3[z + 1]S1[z + 2]

Srlxz] <+ Sslz+1]Ss[z + 2] @ S5z + 1]S3[x + 2]

Sglz] <« Sslz+1]S2[z + 2] @ S2[z + 1]S5(x + 2]

Solz] <+ Sa[z + 1]Sa[z + 2] ® Sa[z + 1]S2(z + 2]

Siolz] « Safz+1]S1[z + 2] ® Si[z + 1]Sa[z + 2]

A42 10—5

Six] +— Si[w] ® Si[r + 2] @ Sa[r] © So[r + 2] ® S1[z + 1]S2[z + 2] © Si[x + 1]S3[x + 2] © Ss[r + 1]S1[r + 2] ®
Si[z + 1])S1[z + 2] @ Si[z + 1]Se[z + 2] ® S1[z + 1]So[z + 2] ® Si[z + 1]Si0[z + 2] ®
SQ[J)-}—1]Se[x+2]@52[1’4-1]59[36-{-2]@Sz[m-‘rl}Sg[cc-‘rQ]@SQ[a?-f—1]810[I+2]€B
Slo[z+1]5'2[z+2]EBS3[I+1}S6[CB+2}@Sg[w-}—1]59[3:-}—2]@S3[w+1]510[x+2}@
Sg[z—i-1]59[.’]3—‘,—2]@Sg[l‘—l—l]S@[z-l—Q]EBS@[I:+1]510[I+2]@59[14-1]510[1—&-2}@

Solz + 1]S3[z + 2]

Shlx] <+ Ss[z] ® Ss[x + 2] ® Selz] ® Se[x + 2] ® Sz + 1]S1[z + 2] ® Si[z + 1]S5[x + 2] © Se[z + 1]S1[x + 2] ®
Silx + 1]S7[z + 2] ® S7[x + 1]S1[x + 2] ® S1[z + 1])Ssg[z + 2] & S2[z + 1]S5[x + 2] @
Ss[x+l]$’2[x+2]@SQ[I+1]S7[$+Q]@SQ[:E+1}Sg[m+2]@55[x+1]36[x+2]@

Ss[x + 1]S5[x + 2] @ Se[x + 1]Ss[x + 2] ® Se[x + 1]S7[x + 2] @ Se[x + 1]Sg[z + 2] ©

Sg[z + 1])Se[z + 2] & S7[z + 1]Ss[z + 2] & S5z + 1]Ss[x + 2] @ Ss[x + 1]S7[z + 2] @

55[1‘-}—1]52[2;—1—2]
4[$]EBS4[I+2}@SS[CB]@Sg[w—i—Q]@S4[1‘+1]S4[I+2}@Sg[a:-&-l}Sgh-i—?]@Sl[:v-i—1]84[1‘4—2]@

S4[a:+l]Sl[m+2]®S5[m+1]51[z+2]EBSg[m—&—l}Sl[a:—&—Z]@Sg[a:—i-1]51[33+2]€B

S4[:E+1]S5[$+2]EBS4[$+1]SB[1'+2]EBS4[.’E+1}59[:8—&—2]@59[93—{-1]54[%4—2]EB (13)

S4[x+1]510[w+2]@Sg[:r+1}S5[z+2}@Ss[x+1]59[x+2]@Sg[:p+1]55[x+2]@

Ss[x+1]510[33+2]@Sg[x+1}59[1‘+2}@Sg[m+1]510[$+21@Slo[1‘+1}58[x+2]®

Slo[x —+ 1]59[93 =+ 2] D Slo[m =+ 1]31[30 —+ 2]

Sfl[ac] +— Sg[x]EBS3[:U+2}€BS1Q[x]€BSlo[:c+2}@Sg[x—ﬁ—l]Sg[x—i—Z]695'10[:1:-1-1]510[:5-&-2}@53[x+1]$'4[x+2]EB
S3[z + 1])S5[z + 2] & S5z + 1]S3][x + 2] & Se[z + 1]S3[x + 2] @ S3[z + 1]S7[z + 2] @
S5[J)+1]54[]:-}—2]@S4[I+1]Sﬁ[$+2]@S6[$+1}S4[$+2]€9S4[33+1]87[7;-1—2]@
Slo[z+1]5'4[z+2]EBS@[I+1}S5[;U+2}@57[174—1]55[3:-}—2]@Sm[x-{-l}Ss[I-‘rQ}@
S7[$+1]SG[.’B+2]@Slo[z—‘rl}S@[z—‘rQ}@S7[$+1]510[I+Q]@510[1}—&-1}57[2:—&-2]@
Sio[z + 1]S3[z + 2]

Stlx] <+ Srlx] ® S7[x + 2] ® Solz] ® So[zx + 2] ® S7[x + 1]S7[x + 2] ® So[z + 1]So[x + 2] ® Ss[z + 1]S2[x + 2] ®
Sa[x + 1]S4[z + 2] ® Sa[zx + 1]S2[x + 2] ® S7[x + 1]S2[x + 2] & Sgz + 1]S2[z + 2] ©
Salx + 1]S3[z + 2] ® S7[x + 1]S3[x + 2] ® Sg[x + 1]S3[x + 2] ® So[z + 1]S3[x + 2] &

S7[x + 1]S4a[z + 2] ® Sg[x + 1]Sa[x + 2] ® Sg[x + 1]S7[x + 2] ® So[z + 1]S7[x + 2] ©
Sg[x-}—1]Ss[x+2]@5’7[1}—0-1]59[1:-{-2]EBSg[a:-&-l]Sg[a:-&-Q]@Sg[x-}—1]52[1‘+2]

n

290

Rhythmic KEccAaK: SCA Security and Low Latency in HW

A.4.3 First layer 6 — 6

Sile]
Sy
S
Sile]
S5l

Sl

—

S2[$]@(SQ[$+1]@1)52[$+2]@S1[$+1}SQ[$+2J@52[$+1]51[(13“1‘2]@
Sl[{E—‘r }53[2—5-2]@53[93—%1]51[%—‘,-2]EBSQ[{E—FI]S?,[Z'-FQ]EBSg[.’E+1}SQ[CE+2]
Sslz] @ (Ss[x + 1) ® 1)S5[x + 2] & S1[xz + 1]Sa[z + 2] @ Sz + 1]S1[x + 2] &
51[1‘ }S5[z+2]6955[x+1]51[x+2]®S4[a:+1]S5[x+2]®S5[z+1]54[z+2]
S1[x]®(51[m+1]691)31[:1:+2]@S1[x+1}55[m+2]@Sg[erl]Sl[erQ]QB
Salz + 1])Ss[x + 2] @ Se[z + 1]Sa[z + 2] (14)
Selz] ® (Se[x + 1] ® 1)Se[x + 2] ® Sa2[z + 1]Ss[x + 2] ® Ss[z + 1]S2(z + 2] &
Sz[a:-‘r }SG[CC-&-Q]GBSG[J)-I—1]52[2:-}—2]@S5[$+1]56[$+2]@56[33-&-1}55[:6-&-2]
Sg[x]@(53[$+1]@1)53[$+2]EBSg[CB+1}S5[$+2]@S5[aT+1]53[33-}—2]@
S3[$+1}SG[$+2]@SG[:D+1]53[:174—2]
S4[(E]@(S4[I+1]@1)S4[l’+2]EBSQ[{E—F1}54[2—0—2]@54[934—1]52[%4—2]EB
Szlz + 1]S4[x + 2] ® Sa[z + 1]S3[z + 2]

A.4.4 Second layer 6 — 6

S4lal
Sjlal
S4lal
$4lal
S4lal

Sl

—

Selz] @ (Selxr + 1] ® 1)Se[z + 2] @ Ss[x + 1]Se[x + 2] @ Se[z + 1]S5[x + 2] &
Selx + 1]Sa[x + 2] @ Sa[z + 1]Ss[x + 2]
Sz[:c]@(Sg[x-‘rl]@)32[124-2]EBSQ[:IJ-&-l}Sg[CIZ-&-Q]G}Sg[x—I—1]5’2[Z‘+2]®
Sa[z + 1)S5[z + 2] & Ss[z + 1]S2[z + 2] & S3[z + 1]Ss[x + 2] & S5z + 1]S3[x + 2]
Sa[z] & (Salz + 1] & 1)Salz + 2] & Sa[z + 1]Sa[z + 2] & Safz + 1]S2(z + 2] &
Szlz + 1]S4[x + 2] ® Sa[z + 1]S3[z + 2] (15)
Ss[z] ® (Ss[z + 1] @ 1)S5[z + 2] & S1[z + 1]Sa[z + 2] & Sa[z + 1]S1[z + 2] &
Silz + 1])S5[z + 2] & Ss[z + 1])S1 [z + 2] & Sa[z + 1]Ss[x + 2] & S5z + 1]Ss[z + 2]
Szlz] ® (S3[z + 1] @ 1)Sz[z + 2] ® S3[z + 1]S1[z + 2] ® Si[z + 1]S3[z + 2] ®
Sszlz + 1]Ss[x + 2] @ Se[z + 1]S3[x + 2]
Silz] ® (Si[z+ 1] @ 1)S1[x + 2] @ Si[z + 1]S2[z + 2] ® Sz2[z + 1]S1[z + 2] &
115

Si[z + 1)Ss[z + 2] & Se[z + 1]S1[z + 2] & S2[z + 1]Se [z + 2] B Se[z + 1]S2[z + 2]

	Introduction
	Preliminaries
	Keccak Permutations
	Masking Schemes

	Round-Based Implementations
	Analysis of DOM-Keccak
	Non-Complete Round-Based Architecture
	Performance Analysis

	Unrolled Implementations
	Quadratic Functions
	Extending the Methodology

	Speeding Up Keccak Implementations
	First Attempt for Keccak
	Our Final Design

	Conclusions
	Appendix
	Keccak Round Steps
	Second-order Masking
	Non-completeness Failure in Round-Based DOM Implementation
	Double round sharings

